Results 71 to 80 of about 197,676 (281)
A Q‐Learning Algorithm to Solve the Two‐Player Zero‐Sum Game Problem for Nonlinear Systems
A Q‐learning algorithm to solve the two‐player zero‐sum game problem for nonlinear systems. ABSTRACT This paper deals with the two‐player zero‐sum game problem, which is a bounded L2$$ {L}_2 $$‐gain robust control problem. Finding an analytical solution to the complex Hamilton‐Jacobi‐Issacs (HJI) equation is a challenging task.
Afreen Islam +2 more
wiley +1 more source
Contrastive Explanations for Comparing Preferences of Reinforcement Learning Agents [PDF]
Jasmina Gajcin +5 more
openalex +1 more source
Predicting extreme defects in additive manufacturing remains a key challenge limiting its structural reliability. This study proposes a statistical framework that integrates Extreme Value Theory with advanced process indicators to explore defect–process relationships and improve the estimation of critical defect sizes. The approach provides a basis for
Muhammad Muteeb Butt +8 more
wiley +1 more source
Multiagent Deep Reinforcement Learning Algorithms in StarCraft II: A Review
StarCraft II, as a real-time strategy game, features multiagent collaboration, complex decision-making processes, partially observable environments, and long-term credit assignment; thus, it is an ideal platform for exploring, validating, and optimizing ...
Yanyan Li, Yijun Wang, Yiwei Zhou
doaj +1 more source
What Do Large Language Models Know About Materials?
If large language models (LLMs) are to be used inside the material discovery and engineering process, they must be benchmarked for the accurateness of intrinsic material knowledge. The current work introduces 1) a reasoning process through the processing–structure–property–performance chain and 2) a tool for benchmarking knowledge of LLMs concerning ...
Adrian Ehrenhofer +2 more
wiley +1 more source
Improving sample efficiency and exploration in upside-down reinforcement learning
Supervised learning has been demonstrated to be a stable approach for training deep neural networks. Upside-down reinforcement learning solves reinforcement learning problems by using supervised learning, but this method suffers from weak sample ...
Mohammadreza Nakhaei +1 more
doaj +1 more source
Distributed and Distribution-Robust Meta Reinforcement Learning (D2-RMRL) for Data Pre-storing and Routing in Cube Satellite Networks [PDF]
Ye Hu, Xiaodong Wang, Walid Saad
openalex +1 more source
The layer‐by‐layer (LbL) assembly of coordination solids, enabled by the surface‐mounted metal‐organic framework (SURMOF) platform, is on the cusp of generating the organic counterpart of the epitaxy of inorganics. The programmable and sequential SURMOF protocol, optimized by machine learning (ML), is suited for accessing high‐quality thin films of ...
Zhengtao Xu +2 more
wiley +1 more source
Autotuning PID control using Actor-Critic Deep Reinforcement Learning [PDF]
Vivien van Veldhuizen
openalex +1 more source

