Results 131 to 140 of about 287,701 (296)

Atomic Size Misfit for Electrocatalytic Small Molecule Activation

open access: yesAdvanced Functional Materials, EarlyView.
This review explores the application and mechanisms of atomic size misfit in catalysis for small molecule activation, focusing on how structural defects and electronic properties can effectively lower the energy barriers of chemical bonds in molecules like H2O, CO2, and N2.
Ping Hong   +3 more
wiley   +1 more source

Single‐Step Conversion of Metal Impurities in CNTs to Electroactive Metallic Nitride Nanoclusters for Electrochemical CO2 Reduction

open access: yesAdvanced Functional Materials, EarlyView.
A single‐step, low‐temperature co‐pyrolysis process removes encapsulated seed metal NPs (10–50 nm) from CNTs, redistributing them as surface‐anchored metal and metal–nitride NCs (1–1.5 nm). Herein, Ni3N NCs achieve an ultra‐low onset overpotential for CO2 reduction to CO with >98% Faradaic efficiency across 100–700 mA cm−2.
Ahmed Badreldin   +15 more
wiley   +1 more source

Copper Doping Enhances the Activity and Selectivity of Atomically Precise Ag44 Nanoclusters for Photocatalytic CO2 Reduction

open access: yesAdvanced Functional Materials, EarlyView.
By a simple anti‐Galvanic reaction, up to six copper atoms could be preferably doped into the Ag2(SR)5 staple motifs and Ag20 dodecahedral shell of an atomically precise Ag44(SR)30 nanocluster. When anatase TiO2 is used as substrate, the (AgCu)44/TiO2 photocatalyst exhibited much improved activity in photocatalytic CO2 reduction compared to Ag44/TiO2 ...
Ye Liu   +5 more
wiley   +1 more source

All‐in‐One Analog AI Hardware: On‐Chip Training and Inference with Conductive‐Metal‐Oxide/HfOx ReRAM Devices

open access: yesAdvanced Functional Materials, EarlyView.
An all‐in‐one analog AI accelerator is presented, enabling on‐chip training, weight retention, and long‐term inference acceleration. It leverages a BEOL‐integrated CMO/HfOx ReRAM array with low‐voltage operation (<1.5 V), multi‐bit capability over 32 states, low programming noise (10 nS), and near‐ideal weight transfer.
Donato Francesco Falcone   +11 more
wiley   +1 more source

Prospects of Electric Field Control in Perpendicular Magnetic Tunnel Junctions and Emerging 2D Spintronics for Ultralow Energy Memory and Logic Devices

open access: yesAdvanced Functional Materials, EarlyView.
Electric control of magnetic tunnel junctions offers a path to drastically reduce the energy requirements of the device. Electric field control of magnetization can be realized in a multitude of ways. These mechanisms can be integrated into existing spintronic devices to further reduce the operational energy.
Will Echtenkamp   +7 more
wiley   +1 more source

Entangled Multistable Origami with Reprogrammable Stiffness Amplification and Damping

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a class of origami‐inspired metamaterials that overcome the limitations of existing multistable metamaterials by eliminating the need for rigid lateral confinements. Panel entanglement, snap‐through interactions, and instabilities synergy enable them to achieve extensive shape‐shifting, enhanced stiffness, and remarkable energy ...
Amin Jamalimehr   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy