Results 211 to 220 of about 4,784,620 (411)

Retrotransposon Expression Is Upregulated in Adulthood and Suppressed during Regeneration of the Limb in the Axolotl (Ambystoma mexicanum)

open access: yesAdvanced Biology, EarlyView.
The axolotl's remarkable regenerative abilities decline with age, the causes may include the numerous repetitive elements within its genome. This study uncovers how Ty3 retrotransposons and coexpression networks involving muscle and immune pathways respond to aging and regeneration, suggesting that transposons respond to physiological shifts and may ...
Samuel Ruiz‐Pérez   +8 more
wiley   +1 more source

Reliability Engineering. Eigenfrequency Analysis Method of Sandwich Injection Moldings.

open access: bronze, 1998
Yasuhiro Tanimoto   +4 more
openalex   +2 more sources

Current and Future Cornea Chip Models for Advancing Ophthalmic Research and Therapeutics

open access: yesAdvanced Biology, EarlyView.
This review analyzes cornea chip technology as an innovative solution to corneal blindness and tissue scarcity. The examination encompasses recent developments in biomaterial design and fabrication methods replicating corneal architecture, highlighting applications in drug screening and disease modeling while addressing key challenges in mimicking ...
Minju Kim   +3 more
wiley   +1 more source

Activation of SIRT1 Reduces Renal Tubular Epithelial Cells Fibrosis in Hypoxia Through SIRT1‐FoxO1‐FoxO3‐Autophagy Pathway

open access: yesAdvanced Biology, EarlyView.
Hypoxia promotes the epithelial‐mesenchymal transition (EMT) of renal tubular epithelial cells via the SIRT1‐FoxO1‐FoxO3‐autophagy pathway, thereby resulting in the fibrosis of renal tubular epithelial cells. Activation of SIRT1 or induction of autophagy inhibits this process, alleviating hypoxia‐induced fibrosis.
Guangyu Wang   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy