Results 51 to 60 of about 240,834 (310)
Quantum Fields and the Cosmological Constant
It has been shown that if one solves self-consistently the semiclassical Einstein equations in the presence of a quantum scalar field, with a cutoff on the number of modes, spacetime become flatter when the cutoff increases. Here, we extend the result to
Renata Ferrero +2 more
doaj +1 more source
Renormalization of Group Field Theories for Quantum Gravity: New Computations and Some Suggestions
We discuss motivation and goals of renormalization analyses of group field theory models of simplicial 4d quantum gravity, and review briefly the status of this research area.
Marco Finocchiaro +2 more
doaj +1 more source
Peptide Sequencing With Single Acid Resolution Using a Sub‐Nanometer Diameter Pore
To sequence a single molecule of Aβ1−42–sodium dodecyl sulfate (SDS), the aggregate is forced through a sub‐nanopore 0.4 nm in diameter spanning a 4.0 nm thick membrane. The figure is a visual molecular dynamics (VMD) snapshot depicting the translocation of Aβ1−42–SDS through the pore; only the peptide, the SDS, the Na+ (yellow/green) and Cl− (cyan ...
Apurba Paul +8 more
wiley +1 more source
The pioneering applications of the methods of theoretical physics to the turbulence statistical closure problem are summarised. These are: the direct-interaction approximation (DIA) of Kraichnan, the self-consistent-field theory of Edwards, and the self ...
David McComb
doaj +1 more source
Local Thermal Conductivity Patterning in Rotating Lattice Crystals of Anisotropic Sb2S3
Microscale control of thermal conductivity in Sb2S3 is demonstrated via laser‐induced rotating lattice crystals. Thermal conductivity imaging reveals marked thermal transport anisotropy, with the c axis featuring amorphous‐like transport, whereas in‐plane directions (a, b) exhibit 3.5x and 1.7x larger thermal conductivity.
Eleonora Isotta +13 more
wiley +1 more source
We compare the subtractive renormalization and the Wilsonian renormalization group approaches in the context of an effective field theory for the two-nucleon system. Based on an exactly solvable model of contact interactions, we observe that the standard
Epelbaum, E. +2 more
core +2 more sources
Many numerical predictions of experimental phenomena in particle physics are made possible by exploiting the discovery that simplifications can happen when phenomena are investigated on short distance and time scales. This book provides a coherent exposition of the renormalization techniques underlying these calculations.
openaire +3 more sources
Permanent magnets derive their extraordinary strength from deep, universal electronic‐structure principles that control magnetization, anisotropy, and intrinsic performance. This work uncovers those governing rules, examines modern modeling and AI‐driven discovery methods, identifies critical bottlenecks, and reveals electronic fingerprints shared ...
Prashant Singh
wiley +1 more source
Applying a high electric field to a doped organic semiconductor heats up the charge carrier distribution beyond the lattice temperature, enhancing conductivity. It is shown that the associated effective temperature can be used to extract the effective localization length, which is a characteristic length scale of charge transport and provides ...
Morteza Shokrani +4 more
wiley +1 more source
This work is on the nature and properties of graphs which arise in the study of centered polygonal lacunary functions. Such graphs carry both graph-theoretic properties and properties related to the so-called p-sequences found in the study of centered ...
Keith Sullivan +2 more
doaj +1 more source

