Results 221 to 230 of about 1,236,617 (269)
Micropatterned Biphasic Printed Electrodes for High‐Fidelity on‐Skin Bioelectronics
Micropatterned biphasic printed electrodes achieve unprecedented skin conformity and low impedance by combining liquid‐metal droplets with microstructured 3D lattices. This scalable approach enables high‐fidelity detection of ECG, EMG, and EEG signals, including alpha rhythms from the forehead, with long‐term comfort and stability.
Manuel Reis Carneiro +4 more
wiley +1 more source
The NNR‐n series of oligomeric nanographenes delivers exceptional emission performance. This work shows that this performance is originated by their ladder‐type structure, which effectively deactivates low‐frequency vibronic modes. This deactivation neglects the main pathway for non‐emissive deactivation, even in the near‐infrared region. The potential
Marcos Díaz‐Fernández +12 more
wiley +1 more source
Suppression of Disturbances in Repetitive Control Systems
Jin-Hua SHE, Michio NAKANO, Li-Li WANG
openaire +2 more sources
A combinatorial library of dual‐functional antiviral oligomers incorporating N‐halamine and quaternary ammonium functionalities is developed for long‐lasting antiviral activity. The lead materials exhibit rapid and durable antiviral activity against SARS‐CoV‐2 variants and influenza H1N1, with 4 to 5 log reduction in viral copies at 5 mg mL−1 ...
Eid Nassar‐Marjiya +14 more
wiley +1 more source
Demonstration of an All‐Optical AND Gate Mediated by Photochromic Molecules
A logic AND gate that runs on photons is demonstrated. It relies on two spatially separated photochromic molecules that work in tandem. Abstract The realization of a photonic logic AND gate, i.e. a logic AND gate that runs on photons rather than electrons, and where all steps are controlled by light, is demonstrated. In a proof‐of‐principle experiment,
Heyou Zhang +7 more
wiley +1 more source
Selective Benzene Capture by Metal‐Organic Frameworks
Metal‐organic frameworks (MOFs) hold significant potential for capturing benzene from air emissions and hydrocarbon mixtures in liquid phases. This capability stems from their precisely engineered structures, versatile chemistries, and diverse binding interactions.
Zongsu Han +4 more
wiley +1 more source
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou +4 more
wiley +1 more source
This study demonstrates that pulsed potential electrolysis significantly improves CO2 reduction performance on copper‐nitrogen doped carbon electrodes. The formation of cationic copper sites and metallic clusters as a function of applied intermittent potential leads to notable selectivity changes compared to potentiostatic reduction.
Dorottya Hursán +13 more
wiley +1 more source

