Results 141 to 150 of about 191,070 (307)

A Scalable, Durable, Fire‐Safe All‐Day Passive Radiative Cooling Coating for Sustainable Buildings

open access: yesAdvanced Functional Materials, EarlyView.
This study reports a scalable, durable coating that combines a fire‑retardant copolymer adhesive, hollow glass microspheres, and boron oxide to achieve passive radiative cooling with over 94% solar reflectance and >95% mid‑infrared emissivity. The coating maintains performance after UV and rain exposure and exhibits UL‑94 V‑0 fire resistance, enabling ...
Zhewen Ma   +8 more
wiley   +1 more source

Multi‐Ion Doping Controlled CEI Formation in Structurally‐Stable High‐Energy Monoclinic‐Phase NASICON Cathodes for Sodium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
The graphical abstract illustrates the synthesis pathway, morphological feature, and thermodynamic feasibility of entropy‐engineered NASICON cathodes for sodium‐ion batteries. Abstract Overcoming the energy density limitations of sodium‐ion batteries (NIBs) requires innovative strategies to optimize cathode materials.
Sharad Dnyanu Pinjari   +9 more
wiley   +1 more source

Upconversion Nanoparticles Embedded Photonic Contact Lens for Transepithelial Corneal Crosslinking Using Hyaluronate – Riboflavin Conjugate

open access: yesAdvanced Functional Materials, EarlyView.
A minimally invasive, transepithelial corneal cross‐linking (TE‐CXL) approach is presented using upconversion nanoparticles (UCNPs)‐loaded contact lenses (UCLs), after topical delivery of hyaluronate–riboflavin conjugates. The NIR‐to‐UV/blue light conversion by UCNPs in a UCL can activate riboflavin for TE‐CXL, resulting in the biomechanical strength ...
Gibum Lee   +8 more
wiley   +1 more source

Single Solid‐State Ion Channels as Potentiometric Nanosensors

open access: yesAdvanced Functional Materials, EarlyView.
Single gold nanopores functionalized with mixed self‐assembled monolayers act as solid‐state ion channels for direct, selective potentiometric sensing of inorganic ions (Ag⁺). The design overcomes key miniaturization barriers of conventional ion‐selective electrodes by combining low resistivity with suppressed loss of active components, enabling robust
Gergely T. Solymosi   +4 more
wiley   +1 more source

Atomically Revealing Bulk Point Defect Dynamics in Hydrogen‐Driven γ‐Fe2O3 → Fe3O4 → FeO Transformation

open access: yesAdvanced Functional Materials, EarlyView.
In situ TEM uncovers the atomic‐scale mechanisms underlying hydrogen‐driven γ‐Fe2O3→Fe3O4→FeO reduction. In γ‐Fe2O3, oxygen vacancies cluster around intrinsic Fe vacancies, leading to nanopore formation, whereas in Fe3O4, vacancy aggregation is suppressed, preserving a dense structure.
Yupeng Wu   +14 more
wiley   +1 more source

Digital Discovery of Synthesizable Metal−Organic Frameworks via Molecular Dynamics‑Informed, High‑Fidelity Deep Learning

open access: yesAdvanced Functional Materials, EarlyView.
Tabular foundation model interrogates the synthetic likelihood of metal−organic frameworks. Abstract Metal–organic frameworks (MOFs) are celebrated for their chemical and structural versatility, and in‑silico screening has significantly accelerated their discovery; yet most hypothetical MOFs (hMOFs) never reach the bench because their synthetic ...
Xiaoyu Wu   +3 more
wiley   +1 more source

Using the Photostationary State of Arylazopyrazoles to Control Phase Transitions of Liquid Crystals

open access: yesAdvanced Functional Materials, EarlyView.
A series of new arylazopyrazole photoswitches is designed as dopants for liquid crystalline materials. Unprecedented, the distribution of photoisomers at the photostationary state upon irradiation with light of specific wavelengths (365, 460, 520 nm) is used to control the liquid crystalline phase transitions under isothermal conditions, including ...
Tobias Thiele   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy