Results 211 to 220 of about 788,437 (264)
Selective Benzene Capture by Metal‐Organic Frameworks
Metal‐organic frameworks (MOFs) hold significant potential for capturing benzene from air emissions and hydrocarbon mixtures in liquid phases. This capability stems from their precisely engineered structures, versatile chemistries, and diverse binding interactions.
Zongsu Han +4 more
wiley +1 more source
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou +4 more
wiley +1 more source
Bloodstream infections (BSI) are one of the leading causes of mortality and morbidity in both civilian and military populations. This paper summarizes recent progress in novel treatment strategies to manage BSI arising from both bacterial and fungal pathogens using molecules, particles, and materials to elicit host‐directed immunity.
Thomas Thomou +11 more
wiley +1 more source
Electroactive Metal–Organic Frameworks for Electrocatalysis
Electrocatalysis is crucial in sustainable energy conversion as it enables efficient chemical transformations. The review discusses how metal–organic frameworks can revolutionize this field by offering tailorable structures and active site tunability, enabling efficient and selective electrocatalytic processes.
Irena Senkovska +7 more
wiley +1 more source
A miniaturized mechano‐acoustic sensor is developed using an electrospun PVDF nanomesh as the diaphragm in a capacitive sensor structure. Unlike conventional nanomesh‐based sensors, it achieves high linear sensitivity, a broad and flat frequency response, and a compact form factor.
Jeng‐Hun Lee +8 more
wiley +1 more source
Pixelwise Estimation of Signal-Dependent Image Noise Using Deep Residual Learning. [PDF]
Tan H, Xiao H, Lai S, Liu Y, Zhang M.
europepmc +1 more source
Bio‐based and (semi‐)synthetic zwitterion‐modified novel materials and fully synthetic next‐generation alternatives show the importance of material design for different biomedical applications. The zwitterionic character affects the physiochemical behavior of the material and deepens the understanding of chemical interaction mechanisms within the ...
Theresa M. Lutz +3 more
wiley +1 more source
Unleashing the Power of Machine Learning in Nanomedicine Formulation Development
A random forest machine learning model is able to make predictions on nanoparticle attributes of different nanomedicines (i.e. lipid nanoparticles, liposomes, or PLGA nanoparticles) based on microfluidic formulation parameters. Machine learning models are based on a database of nanoparticle formulations, and models are able to generate unique solutions
Thomas L. Moore +7 more
wiley +1 more source
Metal artifact reduction on cervical CT images by deep residual learning. [PDF]
Huang X +4 more
europepmc +1 more source
This study investigates electromechanical PUFs that improve on traditional electric PUFs. The electron transport materials are coated randomly through selective ligand exchange. It produces multiple keys and a key with motion dependent on percolation and strain, and approaches almost ideal inter‐ and intra‐hamming distances.
Seungshin Lim +7 more
wiley +1 more source

