Results 1 to 10 of about 673,590 (252)
Interval-Valued General Residuated Lattice-Ordered Groupoids and Expanded Triangle Algebras
As an extension of interval-valued pseudo t-norms, interval-valued pseudo-overlap functions (IPOFs) play a vital role in solving interval-valued multi-attribute decision making problems.
Xiaohong Zhang, Rong Liang
doaj +2 more sources
Some properties of state filters in state residuated lattices [PDF]
We consider properties of state filters of state residuated lattices and prove that for every state filter $F$ of a state residuated lattice $X$: \begin{itemize} \item[(1)] $F$ is obstinate $\Leftrightarrow$ $L/F \cong\{0,1\}$; \item[(2)] $F$ is primary $
Michiro Kondo
doaj +2 more sources
On residuated skew lattices [PDF]
In this paper, we define residuated skew lattice as non-commutative generalization of residuated lattice and investigate its properties. We show that Green’s relation 𝔻 is a congruence relation on residuated skew lattice and its quotient algebra is a ...
Saeid Arsham Borumand +1 more
doaj +2 more sources
Partial Residuated Implications Induced by Partial Triangular Norms and Partial Residuated Lattices
This paper reveals some relations between fuzzy logic and quantum logic on partial residuated implications (PRIs) induced by partial t-norms as well as proposes partial residuated monoids (PRMs) and partial residuated lattices (PRLs) by defining partial ...
Xiaohong Zhang +2 more
doaj +2 more sources
Residuation in orthomodular lattices
We show that every idempotent weakly divisible residuated lattice satisfying the double negation law can be transformed into an orthomodular lattice. The converse holds if adjointness is replaced by conditional adjointness.
Chajda Ivan, Länger Helmut
doaj +3 more sources
We introduce and characterize various gluing constructions for residuated lattices that intersect on a common subreduct, and which are subalgebras, or appropriate subreducts, of the resulting structure. Starting from the 1-sum construction (also known as
Nikolaos Galatos, S. Ugolini
semanticscholar +3 more sources
The Lattice of Intuitionistic Fuzzy Filters in Residuated Lattices [PDF]
The notion of tip-extended pair of intuitionistic fuzzy filters is introduced by which it is proved that the set of all intuitionistic fuzzy filters in a residuated lattice forms a bounded distributive lattice.
Zhen Ming Ma
doaj +4 more sources
Homomorphisms between Fuzzy Approximation Spaces Based on Residuated Lattice
Two kinds of homomorphisms of fuzzy approximation spaces based on complete residuated lattice are proposed. The homomorphisms are structure-preserving maps in some sense.
Yuan Zhao
doaj +2 more sources
The pure spectrum of a residuated lattice [PDF]
This paper studies a fascinating type of filter in residuated lattices, the so-called pure filters. A combination of algebraic and topological methods on the pure filters of a residuated lattice is applied to obtain some new structural results.
S. Rasouli, A. Dehghani
semanticscholar +1 more source
‎Pure Ideals in Residuated Lattices [PDF]
Ideals in MV algebras are‎, ‎by definition‎, ‎kernels of homomorphism‎. ‎An ideal is the dual of a filter in some special logical algebras but not in non-regular residuated lattices‎.
Istrata Mihaela
doaj +1 more source

