Results 201 to 210 of about 673,590 (252)
Some of the next articles are maybe not open access.
L-fuzzy covering rough sets based on complete co-residuated lattice
International Journal of Machine Learning and Cybernetics, 2023Yao-liang Xu +3 more
semanticscholar +1 more source
Soft Computing, 2021
In this paper, the notion of a Rickart residuated lattice is introduced and investigated. A residuated lattice is called Rickart if any its coannulet is generated by a complemented element. It is observed that a residuated lattice $${\mathfrak {A}}$$ , is Rickart iff ...
openaire +2 more sources
In this paper, the notion of a Rickart residuated lattice is introduced and investigated. A residuated lattice is called Rickart if any its coannulet is generated by a complemented element. It is observed that a residuated lattice $${\mathfrak {A}}$$ , is Rickart iff ...
openaire +2 more sources
The Belluce-semilattice associated with a monadic residuated lattice
Soft Computing - A Fusion of Foundations, Methodologies and Applications, 2023Lianzhen Liu, Xiangyang Zhang
semanticscholar +1 more source
Afrika Matematika, 2014
The study of residuated lattices is one of the important topics in algebra. This paper deals with the normal residuated lattices. First we investigate some properties of (right, left) stabilizers and obtain conditions under which right stabilizers become filter. By some examples we show that left stabilizers are not filter.
L. Torkzadeh, A. Ahadpanah
openaire +2 more sources
The study of residuated lattices is one of the important topics in algebra. This paper deals with the normal residuated lattices. First we investigate some properties of (right, left) stabilizers and obtain conditions under which right stabilizers become filter. By some examples we show that left stabilizers are not filter.
L. Torkzadeh, A. Ahadpanah
openaire +2 more sources
Soft Computing, 2015
In the paper, we introduce the notion of state operators on residuated lattices and investigate some related properties of such operators. Also, we give characterizations of Rl-monoids and Heyting algebras, and discuss relations between state operators and states on residuated lattices.
Yongwei Yang, Xiaolong Xin, Pengfei He
openaire +2 more sources
In the paper, we introduce the notion of state operators on residuated lattices and investigate some related properties of such operators. Also, we give characterizations of Rl-monoids and Heyting algebras, and discuss relations between state operators and states on residuated lattices.
Yongwei Yang, Xiaolong Xin, Pengfei He
openaire +2 more sources
A category of complete residuated lattice-value neighborhood groups
Fuzzy Sets Syst., 2021Lingqiang Li, Qiu Jin
semanticscholar +1 more source
Recursive Residuals on a Rectangular Lattice
Biometrical Journal, 1984AbstractA set of independentN(O, ρ2) recursive residuals is obtained for a model proposed by GLEESON and McGILCHRIST (1980) to describe spatial dependence among observations on a rectangular lattice. These residuals can be used to test model adequacy in a similar fashion to Box‐Jenkins techniques for time series models.
A. C. Gleeson, C. A. McGilchrist
openaire +2 more sources
On α-state filters in state residuated lattices
Journal of Logic and ComputationThe purpose of this paper is to investigate $\alpha $-state filters in a state residuated lattice. First, the notion of $\alpha $-state filters in a state residuated lattice is introduced.
Supeng Wu, Xingliang Liang, Jiang Yang
semanticscholar +1 more source
Distance functions and filter topological residuated lattices1
Journal of Intelligent & Fuzzy SystemsIn this paper, we firstly extend C. C. chang’s distance functions from MV-algebras into residuated lattices. But in general, the functions may not be a distance function on residuated lattices.
Bing Chen, Xiao Long Xin, Xiao Fei Yang
semanticscholar +1 more source
A Survey of Residuated Lattices
2002Residuation is a fundamental concept of ordered structures and categories. In this survey we consider the consequences of adding a residuated monoid operation to lattices. The resulting residuated lattices have been studied in several branches of mathematics, including the areas of lattice-ordered groups, ideal lattices of rings, linear logic and multi-
Constantine Tsinakis, Peter Jipsen
openaire +2 more sources

