Results 231 to 240 of about 830,288 (320)

Harnessing Non‐Covalent Protein–Protein Interaction Domains for Production of Biocatalytic Materials Systems

open access: yesAdvanced Functional Materials, EarlyView.
Non‐covalent protein–protein interactions mediated by SH3, PDZ, or GBD domains enable the self‐assembly of stable and biocatalytically active hydrogel materials. These soft materials can be processed into monodisperse foams that, once dried, exhibit enhanced mechanical stability and activity and are easily integrated into microstructured flow ...
Julian S. Hertel   +5 more
wiley   +1 more source

Analysis of land surface temperature trend and climate resilience challenges in Tehran

open access: yesInternational Journal of Environmental Science and Technology, 2019
S. Tayebi   +4 more
semanticscholar   +1 more source

Mechanically Robust Phase‐Change Multiscale‐Architected Metastructures Integrating Asymmetric MXene/T‐CNF Aerogel for Thermal Energy Storage and Electromagnetic Interference Shielding

open access: yesAdvanced Functional Materials, EarlyView.
A multiscale‐architected phase change material (PCM) composite combines latent heat storage, PCM leakage proof, directional thermal conduction, electromagnetic interference (EMI) shielding, and mechanical reinforcement via asymmetric MXene/cellulose aerogel and 3D‐printed metastructures, enabling effective thermal regulation, strong EMI shielding, and ...
Jiheon Kim   +9 more
wiley   +1 more source

Health and Climate at COP29: Advancing Integration and Bridging Research Gaps. [PDF]

open access: yesAnn Glob Health
Patel RR   +4 more
europepmc   +1 more source

Engineered Interface and Spatial Arrangement of Inorganic Components for Dendrite‐Free Li Anodes in Carbonate‐Based Electrolyte

open access: yesAdvanced Functional Materials, EarlyView.
A solid‐state ion exchange strategy constructs dentrimental Li2CO3 into a high‐modulus, high‐surface‐energy interface to enable dendrite‐free deposition of Li metal anode in the harsh carbonate‐based electrolyte. Abstract The practical application of lithium metal batteries (LMBs) in carbonate‐based electrolytes is hindered by uncontrolled lithium (Li)
Qiannan Zhao   +5 more
wiley   +1 more source

Using In Situ TEM to Understand the Surfaces of Electrocatalysts at Reaction Conditions: Single‐Atoms to Nanoparticles

open access: yesAdvanced Functional Materials, EarlyView.
This review summarizes recent advances in closed‐cell in situ TEM strategies for accurate determination of the activity and stability of single‐atom catalyst systems during operation. Operando conditions causing dynamic changes of SAC systems are highlighted and we explain why ensemble average‐based optical techniques may benefit from the technological
Martin Ek   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy