Results 231 to 240 of about 1,222,404 (290)

Ultra‐Sensitive Nanofiber‐Based Triboelectric Nanogenerator for Energy Harvesting and Self‐Powered Sensing

open access: yesAdvanced Materials, EarlyView.
A multidimensional molecular strategy optimizes the tribonegative layer by electrospinning PVDF‐HFP for dipole alignment and crystallinity, followed by 2D borophene doping to enhance conductivity and charge trapping. Integrated with Nylon‐66 nanofibers, the composite device delivers a record sensitivity of 53.8 ± 1.2 V kPa−1 at 3 Hz, enabling ultra ...
Sajib Roy   +7 more
wiley   +1 more source

AI‐Enhanced Gait Analysis Insole with Self‐Powered Triboelectric Sensors for Flatfoot Condition Detection

open access: yesAdvanced Materials Technologies, Volume 10, Issue 6, March 18, 2025.
The given research presents an innovative insole‐based device employing self‐powered triboelectric nanogenerators (TENG) for flatfoot detection. By integrating TENG tactile sensors within an insole, the device converts mechanical energy from foot movements to electrical signals analyzed via machine learning, achieving an 82% accuracy rate in flatfoot ...
Moldir Issabek   +7 more
wiley   +1 more source

Advanced Techniques for Scalable Woven E‐Textiles Manufacturing

open access: yesAdvanced Materials Technologies, EarlyView.
This review highlights recent advances in scalable weaving techniques for e‐textiles, emphasizing innovations in multilayer structures, conductive yarn integration, and loom modifications. It summarizes emerging materials, fabrication strategies, and performance considerations that enable reliable, durable, and industrially scalable woven electronic ...
Faisal Abedin   +2 more
wiley   +1 more source

Air pollution and mortality for cancer of the respiratory system in Italy: an explainable artificial intelligence approach. [PDF]

open access: yesFront Public Health
Romano D   +6 more
europepmc   +1 more source

Adhesive Double‐Network Granular Organogel E‐Skin

open access: yesAdvanced Materials Technologies, EarlyView.
We introduce a double‐network granular organogel adhesive for electronic skin, overcoming adhesion and strength trade‐offs. It provides reversible, robust bonding and ionic conductivity, enabling wearable and soft robotic e‐skin. Thanks to the e‐skin adhesive, a soft robotic trunk can recognize touch, temperature, humidity, and acidity.
Antonia Georgopoulou   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy