Results 171 to 180 of about 179,539 (265)
Distribution of Type I Restriction–Modification Systems in Streptococcus suis: An Outlook [PDF]
Niels Willemse, Constance Schultsz
openalex +1 more source
This study characterizes the responses of primary acute myeloid leukemia (AML) patient samples to the MCL‐1 inhibitor MIK665. The results revealed that monocytic differentiation is associated with MIK665 sensitivity. Conversely, elevated ABCB1 expression is a potential biomarker of resistance to the treatment, which can be overcome by the combination ...
Joseph Saad +17 more
wiley +1 more source
Characterization of a Novel N4-Methylcytosine Restriction-Modification System in Deinococcus radiodurans. [PDF]
Shi C +5 more
europepmc +1 more source
Plasma‐based detection of actionable mutations is a promising approach in lung cancer management. Analysis of ctDNA with a multigene NGS panel identified TP53, KRAS, and EGFR as the most frequently altered, with TP53 and KRAS in treatment‐naïve patients and TP53 and EGFR in previously treated patients.
Giovanna Maria Stanfoca Casagrande +11 more
wiley +1 more source
Characterization of the intergenic region which regulates the MspI restriction-modification system
S Som, Stanford B. Friedman
openalex +2 more sources
Aggressive prostate cancer is associated with pericyte dysfunction
Tumor‐produced TGF‐β drives pericyte dysfunction in prostate cancer. This dysfunction is characterized by downregulation of some canonical pericyte markers (i.e., DES, CSPG4, and ACTA2) while maintaining the expression of others (i.e., PDGFRB, NOTCH3, and RGS5).
Anabel Martinez‐Romero +11 more
wiley +1 more source
ERRFI1, a neural crest (NC)‐associated gene, was upregulated in melanoma and negatively correlated with the expression of melanocytic differentiation markers and the susceptibility of melanoma cells toward BRAF inhibitors (BRAFi). Knocking down ERRFI1 significantly increased the sensitivity of melanoma cells to BRAFi.
Nina Wang +8 more
wiley +1 more source

