Results 141 to 150 of about 68,164 (301)
Growth Hormone‐Loaded 3D Printed Silk Fibroin‐Cellulose Dressings for Ischemic Wounds
3D‐printed wound dressings combining carboxymethyl cellulose, silk fibroin, and growth hormone accelerate healing in diabetic ulcers. These bioactive, customizable dressings enhance angiogenesis, cellular proliferation, and immune modulation. Proteomic analysis reveals activation of regenerative pathways and reduced fibrosis, highlighting their ...
Maria Pita‐Vilar +7 more
wiley +1 more source
Rheology of Dental Photopolymers for SLA/DLP/MSLA 3D Printing. [PDF]
Šimunović L +4 more
europepmc +1 more source
Compression‐Tension‐Asymmetry and Stiffness Nonlinearity of Collagen‐Matrigel Composite Hydrogels
Self‐assembled collagen hydrogel matrices are widely used in tissue engineering applications. These matrices stiffen and contract laterally under tension due to fiber alignment and soften and collapse under compression due to fiber buckling. It is demonstrated that filler materials, such as Matrigel, linearize the mechanical behavior of collagen ...
David Böhringer +9 more
wiley +1 more source
Linear Viscoelastic Wood Creep Models. [PDF]
Socha T, Kula K, Denisiewicz A.
europepmc +1 more source
Rheology of mobile sediment beds in laminar shear flow: effects of creep and polydispersity
Christoph Rettinger +3 more
openalex +2 more sources
A novel method that combines 3D printing and organ‐on‐chip technology enables the creation of hollow channels lined with endothelial cells through a fibroblast‐populated connective tissue matrix. The model supports stable metabolic culture conditions, angiogenic sprouting, and immune cell migration, thereby demonstrating an easy and versatile method to
Jonas Jäger +7 more
wiley +1 more source
Relationships between printability and rheology of inks for personalized nutrition. [PDF]
van der Sman R +3 more
europepmc +1 more source
This research investigates the feasibility of 3D‐printing of a bacteriophage‐containing hydrogel made of alginate and methylcellulose. The printed hydrogels steadily release active bacteriophages for up to 35 days which is beneficial to treat implant‐associated infections.
Corina Vater +8 more
wiley +1 more source

