Results 201 to 210 of about 68,164 (301)
Hydrogels demonstrate material properties that mimic the mechanical and chemical environments of biological tissues. Yet, they face challenges during their integration into 3D interfaces. By identifying a class of thermoplastic hydrogels, a strategy is developed to pattern hydrogels in thermally drawn fibers.
Changhoon Sung +13 more
wiley +1 more source
Aqueous Solutions of Oil-Soluble Polyglycerol Esters: Structuring and Emulsifying Abilities. [PDF]
Stanimirova R +3 more
europepmc +1 more source
Microarchitecture sculpting via phase separation programs hydrogel mechanics by creating globular, inverse globular, and spinodal structures. Spinodal architectures deliver superior toughness and energy dissipation, while ionic modulation through single polymer phase separation offers a simple, scalable route to tune mechanical properties ...
Castro Johnbosco +9 more
wiley +1 more source
In silico biophysics and rheology of blood and red blood cells in Gaucher Disease. [PDF]
Chai Z +6 more
europepmc +1 more source
Bottlebrush molecular architecture prevents the crystallization of high molecular weight polyethylene glycol (PEG) based polymers, enabling highly stretchable photocurable PEG hydrogels and elastomers for high‐performance conductive solvent‐free electrolytes at room temperature and for additive manufacturing of complex architectures and multi‐material ...
Baiqiang Huang +5 more
wiley +1 more source
Viscous Rheological Behavior of Nanosuspensions of Fumed Silica Nanoparticles and Cellulose Nanocrystals. [PDF]
Pal R, Alizadeh H.
europepmc +1 more source
Multiphase printable organohydrogels with tunable microstructures are developed to control molecular transport pathways for immiscible cargo. The tortuosity and domain size of the colloidal phases are tuned by adjusting temperature and shear during processing, which enables the tailoring of diffusion kinetics due to different transport pathways.
Riley E. Dowdy‐Green +4 more
wiley +1 more source
The research demonstrates a Mesenchymal Stem Cell‐inspired microneedle platform (MSCi@MN) that addresses chronic diabetic wounds by combining MSC‐derived extracellular nanovesicles (NV)–DNA conjugates in microneedle tips with photothermal MXene in the patch layer.
Chan Ho Moon +21 more
wiley +1 more source

