Results 1 to 10 of about 8,322 (165)
High genus surface parameterization using the Euclidean Ricci flow method [PDF]
The parameterization of surfaces, which is related to many frontier problems in mathematics, has long been a challenge for scientists and engineers.
Yuan-guang Wang
doaj +2 more sources
The Soliton-Ricci Flow with variable volume forms
We introduce a flow of Riemannian metrics and positive volume forms over compact oriented manifolds whose formal limit is a shrinking Ricci soliton. The case of a fixed volume form has been considered in our previouswork.We still call this new flow, the ...
Pali Nefton
doaj +2 more sources
The spinorial energy for asymptotically Euclidean Ricci flow [PDF]
This article introduces a functional generalizing Perelman’s weighted Hilbert-Einstein action and the Dirichlet energy for spinors. It is well defined on a wide class of noncompact manifolds; on asymptotically Euclidean manifolds, the functional is shown
Baldauf Julius, Ozuch Tristan
doaj +2 more sources
Deep learning as Ricci flow [PDF]
Deep neural networks (DNNs) are powerful tools for approximating the distribution of complex data. It is known that data passing through a trained DNN classifier undergoes a series of geometric and topological simplifications.
Anthony Baptista +5 more
doaj +2 more sources
Non-local interaction in discrete Ricci curvature-induced biological aggregation [PDF]
We investigate the collective dynamics of multi-agent systems in two- and three-dimensional environments generated by minimizing discrete Ricci curvature with local and non-local interaction neighbourhoods.
Jyotiranjan Beuria, Laxmidhar Behera
doaj +2 more sources
Hyperbolic Ricci-Bourguignon-Harmonic Flow [PDF]
In this paper, we consider hyperbolic Ricci-Bourguignon flow on a compact Riemannian manifold M coupled with the harmonic map flow between M and a fixed manifold N. At the first, we prove the unique short-time existence to solution of this system.
Shahrood Azami
doaj +1 more source
On Weak Super Ricci Flow through Neckpinch
In this article, we study the Ricci flow neckpinch in the context of metric measure spaces. We introduce the notion of a Ricci flow metric measure spacetime and of a weak (refined) super Ricci flow associated to convex cost functions (cost functions ...
Lakzian Sajjad, Munn Michael
doaj +1 more source
Yamabe constant evolution and monotonicity along the conformal Ricci flow
We investigate the Yamabe constant's behaviour in a conformal Ricci flow. For conformal Ricci flow metric g(t), t∈[0,T), the time evolution formula for the Yamabe constant Y(g(t)) is derived.
Yanlin Li +3 more
doaj +1 more source
The ∗-Ricci Operator on Hopf Real Hypersurfaces in the Complex Quadric
We study the ∗-Ricci operator on Hopf real hypersurfaces in the complex quadric. We prove that for Hopf real hypersurfaces in the complex quadric, the ∗-Ricci tensor is symmetric if and only if the unit normal vector field is singular.
Rongsheng Ma, Donghe Pei
doaj +1 more source
In the present work, we find the Lie point symmetries of the Ricci flow on an n-dimensional manifold, and we introduce a method in order to reutilize these symmetries to obtain the Lie point symmetries of particular metrics.
López Enrique +2 more
doaj +1 more source

