Results 1 to 10 of about 103,878 (263)
Deep learning as Ricci flow [PDF]
Abstract Deep neural networks (DNNs) are powerful tools for approximating the distribution of complex data. It is known that data passing through a trained DNN classifier undergoes a series of geometric and topological simplifications. While some progress has been made toward understanding these transformations in neural networks with smooth ...
Baptista, Anthony +5 more
doaj +6 more sources
Pluripotential Kähler–Ricci flows [PDF]
We develop a parabolic pluripotential theory on compact K{ }hler manifolds, defining and studying weak solutions to degenerate parabolic complex Monge-Amp{ }re equations. We provide a parabolic analogue of the celebrated Bedford-Taylor theory and apply it to the study of the K{ }hler-Ricci flow on varieties with log terminal singularities.
Guedj, Vincent +2 more
openaire +5 more sources
Abstract In the present work, we find the Lie point symmetries of the Ricci flow on an n-dimensional manifold, and we introduce a method in order to reutilize these symmetries to obtain the Lie point symmetries of particular metrics. We apply this method to retrieve the Lie point symmetries of the Einstein equations (seen as a “static ...
López Enrique +2 more
openaire +3 more sources
High genus surface parameterization using the Euclidean Ricci flow method [PDF]
The parameterization of surfaces, which is related to many frontier problems in mathematics, has long been a challenge for scientists and engineers.
Yuan-guang Wang
doaj +2 more sources
Radiometric Constraints on the Timing, Tempo, and Effects of Large Igneous Province Emplacement
Exploring the links between Large Igneous Provinces and dramatic environmental impact
An emerging consensus suggests that Large Igneous Provinces (LIPs) and Silicic LIPs (SLIPs) are a significant driver of dramatic global environmental and biological changes, including mass extinctions.
Jennifer Kasbohm +2 more
wiley +4 more sources
We construct a discrete form of Hamilton's Ricci flow (RF) equations for a d-dimensional piecewise flat simplicial geometry, S. These new algebraic equations are derived using the discrete formulation of Einstein's theory of general relativity known as Regge calculus.
Miller, Warner A. +4 more
openaire +2 more sources
On Weak Super Ricci Flow through Neckpinch
In this article, we study the Ricci flow neckpinch in the context of metric measure spaces. We introduce the notion of a Ricci flow metric measure spacetime and of a weak (refined) super Ricci flow associated to convex cost functions (cost functions ...
Lakzian Sajjad, Munn Michael
doaj +1 more source
Hyperbolic Ricci-Bourguignon-Harmonic Flow [PDF]
In this paper, we consider hyperbolic Ricci-Bourguignon flow on a compact Riemannian manifold M coupled with the harmonic map flow between M and a fixed manifold N. At the first, we prove the unique short-time existence to solution of this system.
Shahrood Azami
doaj +1 more source
Producing 3D Ricci flows with nonnegative Ricci curvature via singular Ricci flows [PDF]
We extend the concept of singular Ricci flow by Kleiner and Lott from 3d compact manifolds to 3d complete manifolds with possibly unbounded curvature. As an application of the generalized singular Ricci flow, we show that for any 3d complete Riemannian manifold with non-negative Ricci curvature, there exists a smooth Ricci flow starting from it.
openaire +2 more sources

