Results 1 to 10 of about 2,218 (208)
Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds
The present paper is to deliberate the class of ϵ-Kenmotsu manifolds which admits conformal η-Ricci soliton. Here, we study some special types of Ricci tensor in connection with the conformal η-Ricci soliton of ϵ-Kenmotsu manifolds.
Yanlin Li +3 more
doaj +2 more sources
Some New Characterizations of Trivial Ricci–Bourguignon Solitons
A Ricci–Bourguignon soliton is a self-similar solution to the Ricci–Bourguignon flow equation, and a Ricci–Bourguignon soliton is called trivial if its potential field is zero or killing.
Hana Al-Sodais +4 more
doaj +2 more sources
Characterizations of Trivial Ricci Solitons
Finding characterizations of trivial solitons is an important problem in geometry of Ricci solitons. In this paper, we find several characterizations of a trivial Ricci soliton.
Sharief Deshmukh +2 more
doaj +3 more sources
Ricci-Bourguignon Solitons With Certain Applications to Relativity
This article concerns with the investigation of Ricci-Bourguignon solitons and gradient Ricci-Bourguignon solitons in perfect fluid space-times and generalised Robertson–Walker space-times.
Krishnendu De +3 more
doaj +2 more sources
Geometric Classifications of Perfect Fluid Space-Time Admit Conformal Ricci-Bourguignon Solitons
This paper is dedicated to the study of the geometric composition of a perfect fluid space-time with a conformal Ricci-Bourguignon soliton, which is the extended version of the soliton to the Ricci-Bourguignon flow.
Noura Alhouiti +5 more
doaj +2 more sources
Lorentzian Para-Kenmotsu Manifolds Within the Framework of ∗-Conformal η-Ricci Soliton
The present article intends to study the ∗-conformal η-Ricci soliton on n-LPK (n-dimensional Lorentzian para-Kenmotsu) manifolds with curvature constraints.
Shyam Kishor +3 more
doaj +2 more sources
A Study on Contact Metric Manifolds Admitting a Type of Solitons
The principal aim of the present article is to characterize certain properties of η-Ricci–Bourguignon solitons on three types of contact manifolds, that are K-contact manifolds, κ,μ-contact metric manifolds, and Nκ-contact metric manifolds.
Tarak Mandal +3 more
doaj +2 more sources
The Soliton-Ricci Flow with variable volume forms
We introduce a flow of Riemannian metrics and positive volume forms over compact oriented manifolds whose formal limit is a shrinking Ricci soliton. The case of a fixed volume form has been considered in our previouswork.We still call this new flow, the ...
Pali Nefton
doaj +2 more sources
The goal of the present study is to study the ∗-η-Ricci soliton and gradient almost ∗-η-Ricci soliton within the framework of para-Kenmotsu manifolds as a characterization of Einstein metrics.
Santu Dey, Nasser Bin Turki
doaj +1 more source
The goal of this paper is to find some important Einstein manifolds using conformal Ricci solitons and conformal Ricci almost solitons. We prove that a Kenmotsu metric as a conformal Ricci soliton is Einstein if it is an $\eta$-Einstein or the potential ...
S. Dey
doaj +1 more source

