Results 41 to 50 of about 7,482 (208)
to appear in J.
Ovidiu Munteanu, Natasa Sesum
openaire +3 more sources
On gradient Ricci solitons with symmetry [PDF]
We study gradient Ricci solitons with maximal symmetry. First we show that there are no nontrivial homogeneous gradient Ricci solitons. Thus, the most symmetry one can expect is an isometric cohomogeneity one group action. Many examples of cohomogeneity one gradient solitons have been constructed.
Peter Petersen +2 more
openaire +3 more sources
Abstract In this article, we present new gradient estimates for positive solutions to a class of non‐linear elliptic equations involving the f‐Laplacian on a smooth metric measure space. The gradient estimates of interest are of Souplet–Zhang and Hamilton types, respectively, and are established under natural lower bounds on the generalised Bakry–Émery
Ali Taheri, Vahideh Vahidifar
wiley +1 more source
Geometric classifications of k-almost Ricci solitons admitting paracontact metrices
The prime objective of the approach is to give geometric classifications of kk-almost Ricci solitons associated with paracontact manifolds. Let M2n+1(φ,ξ,η,g){M}^{2n+1}\left(\varphi ,\xi ,\eta ,g) be a paracontact metric manifold, and if a KK-paracontact
Li Yanlin +4 more
doaj +1 more source
Rigidity of gradient Ricci solitons [PDF]
We define a gradient Ricci soliton to be rigid if it is a flat bundle $% N\times_ \mathbb{R}^{k}$ where $N$ is Einstein. It is known that not all gradient solitons are rigid. Here we offer several natural conditions on the curvature that characterize rigid gradient solitons. Other related results on rigidity of Ricci solitons are also explained in the
Petersen, Peter, Wylie, William
openaire +2 more sources
In the paper, we study complete almost Ricci solitons using the concepts and methods of geometric dynamics and geometric analysis. In particular, we characterize Einstein manifolds in the class of complete almost Ricci solitons. Then, we examine compact almost Ricci solitons using the orthogonal expansion of the Ricci tensor, this allows us to ...
Vladimir Rovenski +2 more
openaire +3 more sources
On the Almost $\eta-$Ricci Solitons on Pseudosymmetric Lorentz Generalized Sasakian Space Forms
In this paper, we consider Lorentz generalized Sasakian space forms admitting almost $\eta-$Ricci solitons in some curvature tensors. Ricci pseudosymmetry concepts of \ Lorentz generalized Sasakian space forms admitting $\eta-$Ricci soliton have ...
Mehmet Atçeken, Tuğba Mert
doaj +1 more source
Almost Pseudo Symmetric Kähler Manifolds Admitting Conformal Ricci-Yamabe Metric
The novelty of the paper is to investigate the nature of conformal Ricci-Yamabe soliton on almost pseudo symmetric, almost pseudo Bochner symmetric, almost pseudo Ricci symmetric and almost pseudo Bochner Ricci symmetric Kähler manifolds.
Sunil Kumar Yadav +2 more
doaj +1 more source
Stability of K\"ahler-Ricci flow in the space of K\"ahler metrics [PDF]
In this paper, we prove that on a Fano manifold $M$ which admits a K\"ahler-Ricci soliton $(\om,X)$, if the initial K\"ahler metric $\om_{\vphi_0}$ is close to $\om$ in some weak sense, then the weak K\"ahler-Ricci flow exists globally and converges in ...
Bando +13 more
core +1 more source
Ricci soliton solvmanifolds [PDF]
18 pages, to appear in Crelle's ...
openaire +3 more sources

