Results 71 to 80 of about 38,409 (231)
Geometry of shrinking Ricci solitons [PDF]
The main purpose of this paper is to investigate the curvature behavior of four-dimensional shrinking gradient Ricci solitons. For such a soliton $M$ with bounded scalar curvature $S$, it is shown that the curvature operator $\text{Rm}$ of $M$ satisfies the estimate $|\text{Rm}|\leqslant cS$ for some constant $c$.
Ovidiu Munteanu, Jiaping Wang
openaire +3 more sources
Ricci almost solitons and gradient Ricci almost solitons in $(k,\mu)$-paracontact geometry
The purpose of this paper is to study Ricci almost soliton and gradient Ricci almost soliton in $(k,\mu)$-paracontact metric manifolds. We prove the non-existence of Ricci almost soliton in a $(k,\mu)$-paracontact metric manifold $M$ with $k-1$ and whose
Uday Chand De, Krishanu Mandal
doaj +1 more source
η-Ricci Solitons on Kenmotsu 3-Manifolds
In the present paper we study η-Ricci solitons on Kenmotsu 3-manifolds. Moreover, we consider η-Ricci solitons on Kenmotsu 3-manifolds with Codazzi type of Ricci tensor and cyclic parallel Ricci tensor.
De Krishnendu, De Uday Chand
doaj +1 more source
Open String Renormalization Group Flow as a Field Theory
Abstract This article shows that the integral flow‐lines of the RG‐flow of open string theory can be interpreted as the solitons of a Hořova–Lifshitz sigma‐model of open membranes. The authors argue that the effective background description of this model implies the g‐theorem of open string theory.
Julius Hristov
wiley +1 more source
Homogeneous Ricci almost solitons [PDF]
It is shown that a locally homogeneous proper Ricci almost soliton is either of constant sectional curvature or a product $\mathbb{R}\times N(c)$, where $N(c)$ is a space of constant curvature.
E. Calviño-Louzao+3 more
openaire +3 more sources
Almost Ricci–Yamabe soliton on contact metric manifolds [PDF]
Purpose – This paper aims to study almost Ricci–Yamabe soliton in the context of certain contact metric manifolds. Design/methodology/approach – The paper is designed as follows: In Section 3, a complete contact metric manifold with the Reeb vector field
Mohan Khatri, Jay Prakash Singh
doaj +1 more source
Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection
Let $ (M, g) $ be an $ n $-dimensional (pseudo-)Riemannian manifold and $ TM $ be its tangent bundle $ TM $ equipped with the complete lift metric $ ^{C}g $.
Yanlin Li, Aydin Gezer, Erkan Karakaş
doaj +1 more source
Some results on Ricci-Bourguignon solitons and almost solitons [PDF]
We prove some results for the solitons of the Ricci-Bourguignon flow, generalizing corresponding results for Ricci solitons. Taking motivation from Ricci almost solitons, we then introduce the notion of Ricci-Bourguignon $almost$ solitons and prove some results about them which generalize previous results for Ricci almost solitons.
arxiv +1 more source
Uniqueness of Ricci flows from non‐atomic Radon measures on Riemann surfaces
Abstract In previous work (Topping and Yin, https://arxiv.org/abs/2107.14686), we established the existence of a Ricci flow starting with a Riemann surface coupled with a non‐atomic Radon measure as a conformal factor. In this paper, we prove uniqueness, settling Conjecture 1.3 of Topping and Yin (https://arxiv.org/abs/2107.14686).
Peter M. Topping, Hao Yin
wiley +1 more source
Convergence of Compact Ricci Solitons [PDF]
We show that sequences of compact gradient Ricci solitons converge to complete orbifold gradient solitons, assuming constraints on volume, the $L^{n/2}$-norm of curvature, and the auxiliary constant $C_1$. The strongest results are in dimension 4, where $L^2$ curvature bounds are equivalent to upper bounds on the Euler number.
openaire +3 more sources