Results 81 to 90 of about 7,482 (208)
The Stability of Generalized Ricci Solitons
AbstractIn Garcia-Fernandez and Streets (Generalized Ricci flow, volume 76 of university lecture series, American Mathematical Society, Providence, 2021) and Oliynyk et al. (Nucl Phys B 739(3):441–458, 2006), it was shown that the generalized Ricci flow is the gradient flow of a functional $$\lambda $$ λ generalizing ...
openaire +2 more sources
Open String Renormalization Group Flow as a Field Theory
Abstract This article shows that the integral flow‐lines of the RG‐flow of open string theory can be interpreted as the solitons of a Hořova–Lifshitz sigma‐model of open membranes. The authors argue that the effective background description of this model implies the g‐theorem of open string theory.
Julius Hristov
wiley +1 more source
In this research note, we investigated the characteristics of perfect fluid spacetime when coupled with the hyperbolic Ricci soliton. We additionally interacted with the perfect fluid spacetime, with a $ \varphi(\mathcal{Q}) $-vector field and a bi ...
Mohd. Danish Siddiqi , Fatemah Mofarreh
doaj +1 more source
Uniqueness of Ricci flows from non‐atomic Radon measures on Riemann surfaces
Abstract In previous work (Topping and Yin, https://arxiv.org/abs/2107.14686), we established the existence of a Ricci flow starting with a Riemann surface coupled with a non‐atomic Radon measure as a conformal factor. In this paper, we prove uniqueness, settling Conjecture 1.3 of Topping and Yin (https://arxiv.org/abs/2107.14686).
Peter M. Topping, Hao Yin
wiley +1 more source
English translation of "Solitony Ricciego" (Wiadomo ci Matematyczne 48, 2012, no. 1, pp. 1-32). Despite the general-sounding title, the text covers just a few narrow topics: Perelman's proof of the fact that compact Ricci solitons are of the gradient type, and a detailed unified description of Page's and Berard Bergery's Einstein manifolds on the one ...
openaire +2 more sources
Coupled Sasaki-Ricci solitons [PDF]
Final version.
Yingying Zhang, Akito Futaki
openaire +3 more sources
Inhomogeneous deformations of Einstein solvmanifolds
Abstract For each non‐flat, unimodular Ricci soliton solvmanifold (S0,g0)$(\mathsf {S}_0,g_0)$, we construct a one‐parameter family of complete, expanding, gradient Ricci solitons that admit a cohomogeneity one isometric action by S0$\mathsf {S}_0$. The orbits of this action are hypersurfaces homothetic to (S0,g0)$(\mathsf {S}_0,g_0)$.
Adam Thompson
wiley +1 more source
Gradient Ricci Bourguignon solitons on perfect fluid space-times [PDF]
The main purpose of the present paper is about characterizing the properties of the perfect fluid space-time that admits the gradient Ricci-Bourguignon soliton. This gives some results about the stability of the energy-momentum tensor and also under some
Sakineh Hajiaghasi, Shahroud Azami
doaj +1 more source
Constrained deformations of positive scalar curvature metrics, II
Abstract We prove that various spaces of constrained positive scalar curvature metrics on compact three‐manifolds with boundary, when not empty, are contractible. The constraints we mostly focus on are given in terms of local conditions on the mean curvature of the boundary, and our treatment includes both the mean‐convex and the minimal case.
Alessandro Carlotto, Chao Li
wiley +1 more source
Gradient pseudo‐Ricci solitons of real hypersurfaces
Abstract Let M be a real hypersurface of a complex space form Mn(c)$M^n(c)$, c≠0$c\ne 0$. Suppose that the structure vector field ξ of M is an eigen vector field of the Ricci tensor S, Sξ=βξ$S\xi =\beta \xi$, β being a function. We study on M, a gradient pseudo‐Ricci soliton (M,g,f,λ,μ$M,g,f,\lambda ,\mu$) that is an extended concept of gradient Ricci ...
Mayuko Kon
wiley +1 more source

