Results 71 to 80 of about 10,189 (207)
Generalized Almost-Ka¨Hler–Ricci Solitons
We generalize K\"ahler-Ricci solitons to the almost-K\"ahler setting as the zeros of Inoue's moment map \cite{MR4017922}, and show that their existence is an obstruction to the existence of first-Chern-Einstein almost-K\"ahler metrics on compact symplectic Fano manifolds.
Michael Albanese +2 more
openaire +4 more sources
Inhomogeneous deformations of Einstein solvmanifolds
Abstract For each non‐flat, unimodular Ricci soliton solvmanifold (S0,g0)$(\mathsf {S}_0,g_0)$, we construct a one‐parameter family of complete, expanding, gradient Ricci solitons that admit a cohomogeneity one isometric action by S0$\mathsf {S}_0$. The orbits of this action are hypersurfaces homothetic to (S0,g0)$(\mathsf {S}_0,g_0)$.
Adam Thompson
wiley +1 more source
Differentiable Manifolds and Geometric Structures
This editorial presents 26 research articles published in the Special Issue entitled Differentiable Manifolds and Geometric Structures of the MDPI Mathematics journal, which covers a wide range of topics particularly from the geometry of (pseudo ...
Adara M. Blaga
doaj +1 more source
Constrained deformations of positive scalar curvature metrics, II
Abstract We prove that various spaces of constrained positive scalar curvature metrics on compact three‐manifolds with boundary, when not empty, are contractible. The constraints we mostly focus on are given in terms of local conditions on the mean curvature of the boundary, and our treatment includes both the mean‐convex and the minimal case.
Alessandro Carlotto, Chao Li
wiley +1 more source
Gradient pseudo‐Ricci solitons of real hypersurfaces
Abstract Let M be a real hypersurface of a complex space form Mn(c)$M^n(c)$, c≠0$c\ne 0$. Suppose that the structure vector field ξ of M is an eigen vector field of the Ricci tensor S, Sξ=βξ$S\xi =\beta \xi$, β being a function. We study on M, a gradient pseudo‐Ricci soliton (M,g,f,λ,μ$M,g,f,\lambda ,\mu$) that is an extended concept of gradient Ricci ...
Mayuko Kon
wiley +1 more source
Geometric Classifications of Perfect Fluid Space‐Time Admit Conformal Ricci‐Bourguignon Solitons
This paper is dedicated to the study of the geometric composition of a perfect fluid space‐time with a conformal Ricci‐Bourguignon soliton, which is the extended version of the soliton to the Ricci‐Bourguignon flow. Here, we have delineated the conditions for conformal Ricci‐Bourguignon soliton to be expanding, steady, or shrinking.
Noura Alhouiti +6 more
wiley +1 more source
$\eta$-Ricci solitons in $(\varepsilon)$-almost paracontact metric manifolds
The object of this paper is to study $\eta$-Ricci solitons on $(\varepsilon)$-almost paracontact metric manifolds. We investigate $\eta$-Ricci solitons in the case when its potential vector field is exactly the characteristic vector field $\xi$ of the $(\
Acet, Bilal Eftal +3 more
core
The Z‐Tensor on Almost Co‐Kählerian Manifolds Admitting Riemann Soliton Structure
A Riemann soliton (RS) is a natural generalization of a Ricci soliton structure on pseudo‐Riemannian manifolds. This work aims at investigating almost co‐Kählerian manifolds (ACKM) 2n+1 whose metrics are Riemann solitons utilizing the properties of the Z‐tensor.
Sunil Kumar Yadav +4 more
wiley +1 more source
Unique Asymptotics of Steady Ricci Solitons with Symmetry [PDF]
Zilu Ma +2 more
openalex +1 more source
Homogeneous Ricci solitons are algebraic [PDF]
7 pages.
openaire +4 more sources

