Nontrivial solutions for a fourth-order Riemann-Stieltjes integral boundary value problem
In this paper we study a fourth-order differential equation with Riemann-Stieltjes integral boundary conditions. We consider two cases, namely when the nonlinearity satisfies superlinear growth conditions (we use topological degree to obtain an existence
Keyu Zhang +3 more
doaj +3 more sources
Existence of solutions for a fractional Riemann–Stieltjes integral boundary value problem
In this paper, we study a Riemann–Liouville-type fractional Riemann–Stieltjes integral boundary value problem under some conditions regarding the spectral radius of the relevant linear operator.
Yanfang Li, Donal O’Regan, Jiafa Xu
doaj +4 more sources
In this paper, we focus on the existence of positive solutions for a class of p-Laplacian tempered fractional diffusion equations involving a lower tempered integral operator and a Riemann–Stieltjes integral boundary condition. By introducing certain new
Lishuang Li+3 more
doaj +3 more sources
This paper deals with the existence and the attractivity of solutions of a class of fractional order functional Riemann-Liouville Volterra-Stieltjes partial integral equations. Our results are obtained by using Schauder's fixed point theorem.
Said Abbas+2 more
doaj +2 more sources
Existence of Solutions to a System of Riemann-Liouville Fractional Differential Equations with Coupled Riemann-Stieltjes Integrals Boundary Conditions [PDF]
A general system of fractional differential equations with coupled fractional Stieltjes integrals and a Riemann–Liouville fractional integral in boundary conditions is studied in the context of pattern formation.
Yuan Ma, Dehong Ji
doaj +2 more sources
A Sharp Bound of the Čebyšev Functional for the Riemann-Stieltjes Integral and Applications
A new sharp bound of the Čebyšev functional for the Riemann-Stieltjes integral is obtained. Applications for quadrature rules including the trapezoid and midpoint rules are given.
S. S. Dragomir
doaj +2 more sources
Nontrivial Solution of Fractional Differential System Involving Riemann-Stieltjes Integral Condition [PDF]
We study the existence and uniqueness of nontrivial solutions for a class of fractional differential system involving the Riemann-Stieltjes integral condition, by using the Leray-Schauder nonlinear alternative and the Banach contraction mapping principle,
Ge-Feng Yang
doaj +2 more sources
On the Riemann-Stieltjes Integral [PDF]
This study contributes to the theory of Riemann-Stieltjes integral. We prove that if all continuous piecewise linear functions are Riemann-Stieltjes integrable with respect to a bounded integrator α : [a,b] → R, then α must be of bounded variation on [a ...
Ali Parsian
doaj +1 more source
A New Class of ψ-Caputo Fractional Differential Equations and Inclusion
In the present research work, we investigate the existence of a solution for new boundary value problems involving fractional differential equations with ψ-Caputo fractional derivative supplemented with nonlocal multipoint, Riemann–Stieltjes integral and
Wafa Shammakh+2 more
doaj +1 more source
On a System of Sequential Caputo Fractional Differential Equations with Nonlocal Boundary Conditions
We obtain existence and uniqueness results for the solutions of a system of Caputo fractional differential equations which contain sequential derivatives, integral terms, and two positive parameters, supplemented with general coupled Riemann–Stieltjes ...
Alexandru Tudorache, Rodica Luca
doaj +1 more source