Results 1 to 10 of about 12,973 (253)
The fractional input stability of the electrical circuit equations described by the fractional derivative operators has been investigated. The Riemann-Liouville and the Caputo fractional derivative operators have been used.
Ndolane Sene
doaj +2 more sources
On Impulsive Boundary Value Problem with Riemann-Liouville Fractional Order Derivative [PDF]
Our manuscript is devoted to investigating a class of impulsive boundary value problems under the concept of the Riemann-Liouville fractional order derivative. The subject problem is of implicit type. We develop some adequate conditions for the existence
Zareen A. Khan, Rozi Gul, Kamal Shah
doaj +2 more sources
On the fractional derivatives at extrema points [PDF]
We correct a recent result concerning the fractional derivative at extrema points. We then establish new results for the Caputo and Riemann-Liouville fractional derivatives at extrema points.
Mohammed Al-Refai
doaj +3 more sources
Three layers thermal protection system modeling by Riemann-Liouville fractional derivative. [PDF]
Brociek R, Hetmaniok E, Słota D.
europepmc +3 more sources
In recent years, various qualitative investigations of the properties of differential equations with different types of generalizations of Riemann–Liouville fractional derivatives were studied and stability properties were investigated, usually using ...
Ravi P. Agarwal +2 more
doaj +1 more source
Lipschitz Stability in Time for Riemann–Liouville Fractional Differential Equations
A system of nonlinear fractional differential equations with the Riemann–Liouville fractional derivative is considered. Lipschitz stability in time for the studied equations is defined and studied.
Snezhana Hristova +2 more
doaj +1 more source
This paper applies two different types of Riemann–Liouville derivatives to solve fractional differential equations of second order. Basically, the properties of the Riemann–Liouville fractional derivative depend mainly on the lower bound of the integral ...
Abdulrahman B. Albidah
doaj +1 more source
Riemann-Liouville fractional differential equations with impulses are useful in modeling the dynamics of many real world problems. It is very important that there are good and consistent theoretical proofs and meaningful results for appropriate problems.
Ravi Agarwal +2 more
doaj +1 more source
Fractional Newton-Raphson Method Accelerated with Aitken's Method
In the following document, we present a way to obtain the order of convergence of the Fractional Newton-Raphson (F N-R) method, which seems to have an order of convergence at least linearly for the case in which the order $\alpha$ of the derivative is ...
Torres-Hernandez, A. +3 more
core +1 more source
A new Definition of Fractional Derivative and Fractional Integral [PDF]
In this paper, we introduce three different definitions of fractional derivatives, namely Riemann-Liouville derivative, Caputo derivative and the new formula Caputo expansion formula, and some basics properties of these derivatives are discussed.
Ahmed M. Kareem
doaj +1 more source

