Results 61 to 70 of about 20,476 (286)
Fractional Telegraph equation with the Riemann-Liouville derivative
The Telegraph equation $(\partial_{t}^{ρ})^{2}u(x,t)+2α\partial_{t}^{ρ}u(x,t)-u_{xx}(x,t)=f(x,t)$, where ...
openaire +2 more sources
Abstract We study a nonlinear ψ−$$ \psi - $$ Hilfer fractional‐order delay integro‐differential equation ( ψ−$$ \psi - $$ Hilfer FrODIDE) that incorporates N−$$ N- $$ multiple variable time delays. Utilizing the ψ−$$ \psi - $$ Hilfer fractional derivative ( ψ−$$ \psi - $$ Hilfer‐FrD), we investigate the Ulam–Hyers––Rassias (U–H–R), semi‐Ulam–Hyers ...
Cemil Tunç, Osman Tunç
wiley +1 more source
This paper presents an efficient numerical scheme for the space–time tempered fractional convection–diffusion equation, where the time derivative is the Caputo-tempered fractional derivative and the space derivatives are the normalized left and right ...
Dechao Gao +3 more
doaj +1 more source
On the Solutions Fractional Riccati Differential Equation with Modified Riemann-Liouville Derivative
Fractional variational iteration method (FVIM) is performed to give an approximate analytical solution of nonlinear fractional Riccati differential equation. Fractional derivatives are described in the Riemann-Liouville derivative.
Mehmet Merdan
doaj +1 more source
First, we show the equivalence of two definitions of the left Riemann–Liouville fractional integral on time scales. Then, we establish and characterize fractional Sobolev space with the help of the notion of left Riemann–Liouville fractional derivative ...
Xing Hu, Yongkun Li
doaj +1 more source
On the Leibniz rule and Laplace transform for fractional derivatives
Taylor series is a useful mathematical tool when describing and constructing a function. With the series representation, some properties of fractional calculus can be revealed clearly.
Liu, Da-Yan +3 more
core +1 more source
Fractional Cauchy Problem with Riemann-Liouville Derivative on Time Scales [PDF]
Summary: \(\nabla\)-Laplace transform, fractional \(\nabla\)-power function, \(\nabla\)-Mittag-Leffler function, fractional \(\nabla\)-integrals, and fractional \(\nabla\)-differential on time scales are defined. Some of their properties are discussed in detail.
Ling Wu, Jiang Zhu
openaire +3 more sources
No‐regret and low‐regret control for a weakly coupled abstract hyperbolic system
Abstract This paper explores an optimal control problem of weakly coupled abstract hyperbolic systems with missing initial data. Hyperbolic systems, known for their wave‐like phenomena and complexity, become even more challenging with weak coupling between subsystems.
Meriem Louafi +3 more
wiley +1 more source
We present a new way of constructing a fractional-based convolution mask with an application to image edge analysis. The mask was constructed based on the Riemann-Liouville fractional derivative which is a special form of the Srivastava-Owa operator ...
Peter Amoako-Yirenkyi +2 more
semanticscholar +1 more source
FRACTIONAL PROBLEMS WITH RIGHT-HANDED RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES
In this paper, we investigate the existence of solutions for advanced fractional differential equations containing the right-handed Riemann-Liouville fractional derivative both with nonlinear boundary conditions and also with initial conditions given at the end point T of interval [0,T].
openaire +2 more sources

