Results 31 to 40 of about 67,838 (152)
Creep properties and constitutive model of diabase in deep water conveyance tunnels
The axial and lateral creep characteristics of diabase were analyzed based on compression creep tests. The nonlinear viscoelastic‐plastic model capable of describing the whole creep process was established based on the fractional derivative and damage theories.
Zhigang Tao +5 more
wiley +1 more source
Geometry of transcendental singularities of complex analytic functions and vector fields
On Riemann surfaces MM, there exists a canonical correspondence between a possibly multivalued function ΨX{\Psi }_{X} whose differential is single-valued (i.e. an additively automorphic singular complex analytic function) and a vector field XX.
Alvarez-Parrilla Alvaro +1 more
doaj +1 more source
We introduce new efficient and accurate first order finite volume‐type numerical schemes, for the non‐conservative one‐dimensional blood flow equations with transport, taking into account different velocity profiles. The framework is the flux‐vector splitting approach of Toro and Vázquez‐Cendón (2012), that splits the system in two subsystems of PDEs ...
Alessandra Spilimbergo +3 more
wiley +1 more source
Space-Time Complexity in Hamiltonian Dynamics
New notions of the complexity function C(epsilon;t,s) and entropy function S(epsilon;t,s) are introduced to describe systems with nonzero or zero Lyapunov exponents or systems that exhibit strong intermittent behavior with ``flights'', trappings, weak ...
Brudno A. A. +7 more
core +1 more source
The proposed work implements a direct flux reconstruction method for spatial discretization and a stiffness‐resilient exponential time integration method for temporal discretization on the cube‐sphere grid. A space‐time tensor formalism is employed to provide a general representation in any curvilinear coordinate system. This combination enables highly
Stéphane Gaudreault +6 more
wiley +1 more source
Abstract This paper is devoted to the approximation of two‐ and three‐dimensional Dirac operators HV∼δΣ$H_{\widetilde{V} \delta _\Sigma }$ with combinations of electrostatic and Lorentz scalar δ$\delta$‐shell interactions in the norm resolvent sense. Relying on results from Behrndt, Holzmann, and Stelzer‐Landauer [Math. Nachr.
Jussi Behrndt +2 more
wiley +1 more source
Superlinear singular fractional boundary-value problems
In this article, we study the superlinear fractional boundary-value problem $$\displaylines{ D^{\alpha }u(x) =u(x)g(x,u(x)),\quad ...
Imed Bachar, Habib Maagli
doaj
ABSTRACT The well‐posedness results for mild solutions to the fractional neutral stochastic differential system with Rosenblatt process with Hurst index Ĥ∈12,1$$ \hat{H}\in \left(\frac{1}{2},1\right) $$ is discussed in this article. To demonstrate the results, the concept of bounded integral contractors is combined with the stochastic result and ...
Dimplekumar N. Chalishajar +3 more
wiley +1 more source
Equivalences of Nonlinear Higher Order Fractional Differential Equations With Integral Equations
ABSTRACT Equivalences of initial value problems (IVPs) of both nonlinear higher order (Riemann–Liouville type) fractional differential equations (FDEs) and Caputo FDEs with the corresponding integral equations are studied in this paper. It is proved that the nonlinearities in the FDEs can be L1$$ {L}^1 $$‐Carathéodory with suitable conditions.
Kunquan Lan
wiley +1 more source
Interaction of Dirac δ$$ \delta $$‐Waves in the Inviscid Levine and Sleeman Chemotaxis Model
ABSTRACT This article investigates interactions of δ$$ \delta $$‐shock waves in the inviscid Levine and Sleeman chemotaxis model ut−λ(uv)x=0$$ {u}_t-\lambda {(uv)}_x=0 $$, vt−ux=0$$ {v}_t-{u}_x=0 $$. The analysis employs a distributional product and a solution concept that extends the classical solution concept.
Adelino Paiva
wiley +1 more source

