Results 91 to 100 of about 288,229 (268)
This research paper explores the decomposition of Weyl's curvature tensor through the lens of Berwald’s first and second-order derivatives in Finsler spaces.
Adel Mohammed Ali Al-Qashbari+2 more
doaj +1 more source
Abstract Critical transitions and tipping phenomena between two meta‐stable states in stochastic dynamical systems are a scientific issue. In this work, we expand the methodology of identifying the most probable transition pathway between two meta‐stable states with Onsager–Machlup action functional, to investigate the evolutionary transition dynamics ...
Peng Zhang+3 more
wiley +1 more source
Riemannian Geometry of Lie Algebroids [PDF]
We introduce Riemannian Lie algebroids as a generalization of Riemannian manifolds and we show that most of the classical tools and results known in Riemannian geometry can be stated in this setting. We give also some new results on the integrability of Riemannian Lie algebroids.
arxiv
On the isoperimetric Riemannian Penrose inequality
Abstract We prove that the Riemannian Penrose inequality holds for asymptotically flat 3‐manifolds with nonnegative scalar curvature and connected horizon boundary, provided the optimal decay assumptions are met, which result in the ADM$\operatorname{ADM}$ mass being a well‐defined geometric invariant.
Luca Benatti+2 more
wiley +1 more source
Pontryagin Calculus in Riemannian Geometry
In this contribution, we study systems with a finite number of degrees of freedom as in robotics. A key idea is to consider the mass tensor associated to the kinetic energy as a metric in a Riemannian configuration space. We apply Pontryagin's framework to derive an optimal evolution of the control forces and torques applied to the mechanical system ...
Claude Vallée+4 more
openaire +3 more sources
ABSTRACT Nowadays, a substantial portion of investigations concerning the symmetry analysis of differential equations predominantly adhere to a framework comprising the following key procedures: (i) the derivation of symmetries, (ii) the determination of an optimal system, (iii) the utilization of these symmetries to construct invariants or ...
A. Paliathanasis+2 more
wiley +1 more source
These notes on Riemannian geometry use the bases bundle and frame bundle, as in Geometry of Manifolds, to express the geometric structures. It has more problems and omits the background material. It starts with the definition of Riemannian and semi-Riemannian structures on manifolds. Affine connections, geodesics, torsion and curvature, the exponential
openaire +2 more sources
Biharmonic submanifolds of pseudo-Riemannian manifolds [PDF]
In this paper, we derived biharmonic equations for pseudo-Riemannian submanifolds of pseudo-Riemannian manifolds which includes the biharmonic equations for submanifolds of Riemannian manifolds as a special case. As applications, we proved that a pseudo-umbilical biharmonic pseudo-Riemannian submanifold of a pseudo-Riemannian manifold has constant mean
arxiv
A Survey of Riemannian Contact Geometry
This survey is a presentation of the five lectures on Riemannian contact geometry that the author gave at the conference “RIEMain in Contact”, 18-22 June 2018 in Cagliari, Sardinia.
Blair David E.
doaj +1 more source
Given a null hypersurface of a Lorentzian manifold, we isometrically immerse a null hypersurface equipped with the Riemannian metric (induced on it by the rigging) into a Riemannian manifold suitably constructed on the Lorentzian manifold.
Karimumuryango Ménédore
doaj +1 more source