Machine learning for enzyme catalytic activity: current progress and future horizons. [PDF]
Qiu S, Saeed H, Leonard W, Li F, Yang A.
europepmc +1 more source
Accelerating Biosensor Discovery: A Computationally‐Driven Pipeline for Microplastics Monitoring
A computationally guided pipeline unites molecular simulation, synthetic biology, electrochemical engineering, and machine learning to accelerate biosensor discovery. A Bacillus anthracis carbohydrate‐binding module is used to develop a high‐performance micro‐ and nanoplastics sensor with greatly reduced error and variability.
Gabriel X. Pereira +13 more
wiley +1 more source
Electric vehicles charging stations load forecasting based on hybrid XGBoost-BiLSTM model. [PDF]
Mansour HSE, Mohamed AS, Abdel-Aziz M.
europepmc +1 more source
The authors evaluated six machine‐learned interatomic potentials for simulating threshold displacement energies and tritium diffusion in LiAlO2 essential for tritium production. Trained on the same density functional theory data and benchmarked against traditional models for accuracy, stability, displacement energies, and cost, Moment Tensor Potential ...
Ankit Roy +8 more
wiley +1 more source
Evaluation of Different Controllers for Sensing-Based Movement Intention Estimation and Safe Tracking in a Simulated LSTM Network-Based Elbow Exoskeleton Robot. [PDF]
Shakeriaski F, Mohammadian M.
europepmc +1 more source
A machine learning method, opt‐GPRNN, is presented that combines the advantages of neural networks and kernel regressions. It is based on additive GPR in optimized redundant coordinates and allows building a representation of the target with a small number of terms while avoiding overfitting when the number of terms is larger than optimal.
Sergei Manzhos, Manabu Ihara
wiley +1 more source
Modeling thermoelectric performance of p-type Cu3SbSe4-based chalcogenide materials using decision trees and structural risk error minimization intelligent computational methods. [PDF]
Alharbi FS.
europepmc +1 more source
Predictive models successfully screen nanoparticles for toxicity and cellular uptake. Yet, complex biological dynamics and sparse, nonstandardized data limit their accuracy. The field urgently needs integrated artificial intelligence/machine learning, systems biology, and open‐access data protocols to bridge the gap between materials science and safe ...
Mariya L. Ivanova +4 more
wiley +1 more source
Continuous Lower Limb Biomechanics Prediction via Prior-Informed Lightweight Marker-GMformer. [PDF]
Zhou H +8 more
europepmc +1 more source
Machine Learning Driven Inverse Design of Broadband Acoustic Superscattering
Multilayer acoustic superscatterers are designed using machine learning to achieve broadband superscattering and strong sound insulation. By incorporating a weighted mean absolute error into the loss function, the forward and inverse neural networks accurately map structural parameters to spectral responses.
Lijuan Fan, Xiangliang Zhang, Ying Wu
wiley +1 more source

