Results 131 to 140 of about 4,960,505 (304)
Decrypting cancer's spatial code: from single cells to tissue niches
Spatial transcriptomics maps gene activity across tissues, offering powerful insights into how cancer cells are organised, switch states and interact with their surroundings. This review outlines emerging computational, artificial intelligence (AI) and geospatial approaches to define cell states, uncover tumour niches and integrate spatial data with ...
Cenk Celik+4 more
wiley +1 more source
Vesicle trafficking and RNA transfer add complexity and connectivity to cell-cell communication.
C. Roberts, P. Kurre
semanticscholar +1 more source
Bridging the gap: Multi‐stakeholder perspectives of molecular diagnostics in oncology
Although molecular diagnostics is transforming cancer care, implementing novel technologies remains challenging. This study identifies unmet needs and technology requirements through a two‐step stakeholder involvement. Liquid biopsies for monitoring applications and predictive biomarker testing emerge as key unmet needs. Technology requirements vary by
Jorine Arnouts+8 more
wiley +1 more source
A‐to‐I editing of miRNAs, particularly miR‐200b‐3p, contributes to HGSOC progression by enhancing cancer cell proliferation, migration and 3D growth. The edited form is linked to poorer patient survival and the identification of novel molecular targets.
Magdalena Niemira+14 more
wiley +1 more source
This study indicates that Merkel cell carcinoma (MCC) does not originate from Merkel cells, and identifies gene, protein & cellular expression of immune‐linked and neuroendocrine markers in primary and metastatic Merkel cell carcinoma (MCC) tumor samples, linked to Merkel cell polyomavirus (MCPyV) status, with enrichment of B‐cell and other immune cell
Richie Jeremian+10 more
wiley +1 more source
Platelets and platelet-like particles mediate intercellular RNA transfer.
A. Risitano+3 more
semanticscholar +1 more source
YAP1::TFE3 mediates endothelial‐to‐mesenchymal plasticity in epithelioid hemangioendothelioma
The YAP1::TFE3 fusion protein drives endothelial‐to‐mesenchymal transition (EndMT) plasticity, resulting in the loss of endothelial characteristics and gain of mesenchymal‐like properties, including resistance to anoikis, increased migratory capacity, and loss of contact growth inhibition in endothelial cells.
Ant Murphy+9 more
wiley +1 more source
Inflammation triggers RNA transfer from blood cells to brain neurons. [PDF]
Robinson R.
europepmc +1 more source