This article concerns with a new model of the sound envelope processing in the auditory system. The so-called non-negative-impulse-response (NNIR) modulation filters concept argues that if any form of the acoustic signal envelope filtering took place in ...
D. KUTZNER
doaj
Local Thermal Conductivity Patterning in Rotating Lattice Crystals of Anisotropic Sb2S3
Microscale control of thermal conductivity in Sb2S3 is demonstrated via laser‐induced rotating lattice crystals. Thermal conductivity imaging reveals marked thermal transport anisotropy, with the c axis featuring amorphous‐like transport, whereas in‐plane directions (a, b) exhibit 3.5x and 1.7x larger thermal conductivity.
Eleonora Isotta +13 more
wiley +1 more source
Reconfigurable Magnetic Soft Microrobot for Acoustically Triggered Targeted Bacterial Sterilization
Reconfigurable magnetic soft microrobots integrate in situ‐grown piezoelectric zinc oxide nanorods that produce reactive oxygen species upon acoustic excitation. Combining magnetically guided transport with thermally induced planar reconfiguration, the microrobots achieve targeted delivery and enhanced bacterial sterilization through efficient on ...
Quan Gao +12 more
wiley +1 more source
Nonnative implicit phonetic training in multiple reverberant environments. [PDF]
Speech intelligibility is adversely affected by reverberation, particularly when listening to a foreign language. However, little is known about how phonetic learning is affected by room acoustics.
Kopčo, Norbert +2 more
core
Efficient Implementation of the Room Simulator for Training Deep Neural Network Acoustic Models
In this paper, we describe how to efficiently implement an acoustic room simulator to generate large-scale simulated data for training deep neural networks.
Bacchiani, Michiel +3 more
core +1 more source
Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha +18 more
wiley +1 more source
MEASUREMENTS IN ROOM ACOUSTICS HOW GOOD ARE WE AT IT [PDF]
IB WITEW, Michael Vorländer
openalex +1 more source
Selection Strategies for Flexible Pressure Sensor Electrode Materials Toward Ultrafast Response
This study reveals, for the first time, how the electrode–organic interface governs the temporal performance of flexible pressure sensors. By pairing high‐conductivity CVD PEDOT with commonly used metal electrodes, the authors demonstrate that interfacial energy alignment dictates microsecond‐scale response, providing a straightforward design strategy ...
Jinwook Baek +11 more
wiley +1 more source
Bio‐based bionic spider silk and spider web are first prepared using polyelectrolyte complexation technique for the simultaneous harvesting of water and triboelectric energy. The advantage of this process lies on entirely bio‐based materials, fully green water‐processable procedures, extremely high production rate (99.36%), excellent fog harvesting ...
Qin Chen +9 more
wiley +1 more source
FDTD/K-DWM simulation of 3D room acoustics on general purpose graphics hardware using compute unified device architecture (CUDA) [PDF]
The growing demand for reliable prediction of sound fields in rooms have resulted in adaptation of various approaches for physical modeling, including the Finite Difference Time Domain (FDTD) and the Digital Waveguide Mesh (DWM).
Fazenda, BM, Sheaffer, J
core

