Results 61 to 70 of about 12,610 (199)
The Tensile Strength of Rubber and Rubber Molecule [PDF]
Abstract The tensile strengths of crystallized crude rubber and vulcanized rubber are remarkably different from each other at room temperature, but are found to be almost the same at the temperature of liquid air. By assuming that the tensile strength of crystallized rubber at this low temperature is entirely due to its chain molecules ...
Usaburo Yoshida, Chullchai Park
openaire +2 more sources
This work explores Li‐substituted P2 layered oxides for Na‐ion batteries by crystallographic and electrochemical studies. The effect of lithium on superstructure orderings, on phase transitions during synthesis and electrochemical cycling and on the interplay of O‐ versus TM‐redox is revealed via various advanced techniques, including semi‐simultaneous
Mingfeng Xu+5 more
wiley +1 more source
Effort to increase rubber farmers’ income when rubber low prices
Rubber is a plantation crop that has high economic value and the largest foreign exchange producer 10. Rubber producers in Indonesia consist of the islands of Sumatra and Kalimantan.
Iman Satra Nugraha+2 more
doaj +1 more source
The study explores for the first time the use of polyvinyl butyral (PVB), particularly recycled PVB, as a sustainable binder for Li/Na‐based electrodes in the framework of the H2020 SUNRISE EU project. Findings revealed that electrodes bound with a sustainable PAA/PVB mixture demonstrated exceptional rate capability and high initial Coulombic ...
Hamideh Darjazi+4 more
wiley +1 more source
This review provides an in‐depth understanding of all theoretical reaction mechanisms to date concerning zinc–iodine batteries. It revisits the inherent issues and solutions of zinc–iodine batteries from the perspective of industrial application. By integrating existing examples of energy storage applications, it identifies the challenges faced on the ...
Haokun Wen+10 more
wiley +1 more source
AbstractThe onset of crack propagation in rubber is studied computationally by using the softening hyperelasticity approach. The basic idea underlying the approach is to limit the capability of a material model to accumulate energy without failure. The latter is done by introducing a limiter for the strain energy density, which results from atomic ...
Pavel A. Trapper, Konstantin Y. Volokh
openaire +2 more sources
Biofabrication aims at providing innovative technologies and tools for the fabrication of tissue‐like constructs for tissue engineering and regenerative medicine applications. By integrating multiple biofabrication technologies, such as 3D (bio) printing with fiber fabrication methods, it would be more realistic to reconstruct native tissue's ...
Waseem Kitana+2 more
wiley +1 more source
Tunable Thermoshrinkable Hydrogels for 4D Fabrication of Cell‐Seeded Channels
A thermoresponsive polymer with methacrylate groups for photo‐cross‐linking, based on polyethylene glycol, N‐isopropylacrylamide, and 2‐hydroxyethyl acrylate is synthetized to yield hydrogels that shrink upon temperature increase. The new polymer enables the fabrication of cell‐laden perfusable channels with diameters below 200 µm by combining ...
Greta Di Marco+12 more
wiley +1 more source
This study explores the use of fluorinated copolymers with varying fluorophilic side chain lengths to enhance PFAS affinity. The integration of electrochemical techniques demonstrates enhanced adsorbent regeneration, with molecular dynamics simulations providing insight into the molecular‐level interactions involved.
Anaira Román Santiago+7 more
wiley +1 more source