Results 121 to 130 of about 81,920 (279)

Microstructural Evolution and Mechanical Performance of Plasma‐Assisted Hybrid Friction Stir Welded Dissimilar Aluminum–Copper Joints

open access: yesAdvanced Engineering Materials, EarlyView.
Plasma‐assisted hybrid friction stir welding of dissimilar AlCu joints employs localized plasma preheating to balance heat input and enhance plastic flow. The optimized process reduces axial force by up to 35%, refines the microstructure, and achieves ≈96% joint efficiency.
Deepak Kumar Yaduwanshi   +3 more
wiley   +1 more source

Nitride‐Reinforced Metal Matrix Nanocomposite Powders Production by Plasma‐Assisted Thermochemical Treatment of Intermetallic Powders

open access: yesAdvanced Engineering Materials, EarlyView.
This study proposes a new methodology for producing metal matrix nanocomposites in the solid state. The process involves the plasma‐assisted thermochemical treatment of metallic alloy powders. As a proof‐of‐concept, TiN nanoparticles are synthesized directly on the surface of FeTi intermetallic powder particles, enabling the development of the ...
Deivison Daros Paim   +4 more
wiley   +1 more source

Interaction between Molten Al‐Killed Mn–B Steel and Carbon‐Bonded MgO Refractories Based on Recyclates

open access: yesAdvanced Engineering Materials, EarlyView.
High‐temperature interactions between low‐sulfur Al‐killed Mn–B steel and MgO–C refractories (0 and 50 wt% recyclates) are studied via finger immersion tests (1600 °C). Surface‐active elements influence infiltration. MgO/CaS layer forms, along with spinel and calcium silicate.
Matheus Roberto Bellé   +5 more
wiley   +1 more source

Fabrication of Multifunctional FeSi Gyroid Lattice Composites via Additive Manufacturing and Polymer Infiltration

open access: yesAdvanced Engineering Materials, EarlyView.
A two‐step approach combining laser powder bed fusion of FeSi electrical steel with Bakelite infiltration enables the fabrication of multifunctional gyroid lattice composites. The resulting structures exhibit high strength, magnetic anisotropy, and complete polymer infiltration, demonstrating a simple and scalable route toward lightweight, mechanically
Angelo F. Andreoli   +9 more
wiley   +1 more source

Sustainable Synthesis of Bio‐Based Magnetic and Conductive Wood for Electromagnetic Interference Shielding Applications

open access: yesAdvanced Engineering Materials, EarlyView.
A wood‐based magnetic and conductive material called Magwood (MW), capable of blocking almost 99.99% of electromagnetic waves (in the X‐band frequency range), is synthesized using a simple, solvent‐free process. MW is lightweight, resists water, and is flame‐retardant, making it a promising alternative for shielding electronics. The rapid proliferation
Akash Madhav Gondaliya   +3 more
wiley   +1 more source

Unique Performance Considerations for Printable Organic Semiconductor and Perovskite Radiation Detectors: Toward Consensus on Best Practice Evaluation

open access: yesAdvanced Functional Materials, EarlyView.
A lack of standard approaches for testing and reporting the performance of metal halide perovskites and organic semiconductor radiation detectors has resulted in inconsistent interpretation of performance parameters, impeding progress in the field. This Perspective recommends key metrics and experimental details, which are suggested for reporting in ...
Jessie A. Posar   +8 more
wiley   +1 more source

Photoswitchable Conductive Metal–Organic Frameworks

open access: yesAdvanced Functional Materials, EarlyView.
A conductive material where the conductivity can be modulated remotely by irradiation with light is presented. It is based on films of conductive metal–organic framework type Cu3(HHTP)2 with embedded photochromic molecules such as azobenzene, diarylethene, spiropyran, and hexaarylbiimidazole in the pores.
Yidong Liu   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy