Results 221 to 230 of about 1,138,426 (292)
Modulating Electrochemical CO2 Reduction Pathways via Interfacial Electric Field
Engineering interfacial electric fields in Cu/ITO electrodes enables precise control of CO2 reduction pathways. Charge transfer from Cu to ITO generates positively charged Cu species that steer selectivity from ethylene toward methane. This work demonstrates how interfacial electric‐field modulation can direct reaction intermediates and transform ...
Mahdi Salehi +7 more
wiley +1 more source
Rapid wavefront shaping using an optical gradient acquisition. [PDF]
Monin S, Alterman M, Levin A.
europepmc +1 more source
Shellac, a centuries‐old natural resin, is reimagined as a green material for flexible electronics. When combined with silver nanowires, shellac films deliver transparency, conductivity, and stability against humidity. These results position shellac as a sustainable alternative to synthetic polymers for transparent conductors in next‐generation ...
Rahaf Nafez Hussein +4 more
wiley +1 more source
Pemphigus foliaceus transforming to pemphigus vulgaris: a case report. [PDF]
Almousa MA +5 more
europepmc +1 more source
This study demonstrates that pulsed potential electrolysis significantly improves CO2 reduction performance on copper‐nitrogen doped carbon electrodes. The formation of cationic copper sites and metallic clusters as a function of applied intermittent potential leads to notable selectivity changes compared to potentiostatic reduction.
Dorottya Hursán +13 more
wiley +1 more source
Inverse-designed gyrotropic scatterers for non-reciprocal analog computing. [PDF]
Hadjiantoni N +4 more
europepmc +1 more source
This work presents self‐propelled CRISPR/Cas9‐functionalized Au–MRs for rapid, amplification‐free, “on‐the‐fly” DNA detection. By harnessing motion‐assisted signal recovery, the platform achieved the limit of detection in low fM DNA concentrations, enabling detection across a wide dynamic range within only 5 min, which is significantly faster than any ...
Jyoti +3 more
wiley +1 more source
Large Anomalous and Topological Hall Effect and Nernst Effect in a Dirac Kagome Magnet Fe3Ge
Fe3Ge, a Kagome‐lattice magnet, exhibits remarkable anomalous Hall and Nernst effects, with transverse thermoelectric conductivity surpassing or comaprable to some well‐known ferromagnets. First‐principles calculations attribute these to Berry curvature from massive Dirac gaps. Additionally, topological Hall and Nernst signals emerge from field‐induced
Chunqiang Xu +11 more
wiley +1 more source

