Results 111 to 120 of about 82,986 (296)
The pyrene and ether groups are incorporated into the covalent triazine polymer (CTP) structure. The synergistic effect of the two functional groups endows CTP with better electron transfer, light absorption, and oxygen activation properties. An impressive apparent quantum yield (13.2% @420 nm) and a remarkable solar‐to‐chemical conversion efficiency ...
Chong Wang +10 more
wiley +1 more source
Radial Kernels Collocation Method for the Solution of Volterra Integro-Differential Equations
Radial kernel interpolation is an advanced method in approximation theory for the construction of higher order accurate interpolants for scattered data up to higher dimensional spaces. In this manuscript, we formulate a radial kernel collocation approach
Stephen Mkegh Nengem +2 more
doaj +1 more source
The study explores structural and magnetic properties of one of the most recent topological quantum materials (MnBi2Te4). The Mn‐poor structure leads to stacking faults (quintuple layer ‐ QL of Bi2Te3 formation instead of a septuple layer ‐ SL of MnBi2Te4), resulting in a coexistence between weak antiferromagnetism and ferromagnetism.
Wesley F. Inoch +10 more
wiley +1 more source
Numerical solutions of a boundary value problem on the sphere using radial basis functions [PDF]
Boundary value problems on the unit sphere arise naturally in geophysics and oceanography when scientists model a physical quantity on large scales. Robust numerical methods play an important role in solving these problems.
Gia, Quoc Thong Le
core
Grain Boundary Space Charge Engineering of Solid Oxide Electrolytes: Model Thin Film Study
This study demonstrates unprecedented control of grain boundary electrical properties in solid electrolytes. Selective diffusion of cations through grain boundaries in thin films enables 12 orders of magnitude variation in ionic resistance, proving that systematic chemical modification of grain boundary electrical properties is feasible.
Thomas Defferriere +5 more
wiley +1 more source
The highly anisotropic Fermi surface of bismuth results in variations in magnetotransport properties across different crystallographic directions, which can be characterized by studying microcrystals. To avoid the observed surface melting under room temperature Focused Ion Beam (FIB) irradiation, two low‐temperature FIB fabrication methods are proposed
Amaia Sáenz‐Hernández +6 more
wiley +1 more source
Microsphere Autolithography—A Scalable Approach for Arbitrary Patterning of Dielectric Spheres
MicroSphere Autolithography (µSAL) enables scalable fabrication of patchy particles with customizable surface motifs. Focusing light through dielectric microspheres creates well defined, tunable patches via a conformal poly(dopamine) photoresist. Nearly arbitrary surface patterns can be achieved, with the resolution set by the index contrast between ...
Elliott D. Kunkel +3 more
wiley +1 more source
Realistic leaf models are significant for numerous applications in the plant sciences, for instance, modelling pesticide droplet movement on the leaf surface.
Moa’ath N. Oqielat
doaj +1 more source
Emergent Spin‐Glass Behavior in an Iron(II)‐Based Metal–Organic Framework Glass
A one‐pot, solvent‐free synthesis yields an Fe2+‐based metal‐organic framework (MOF) glass featuring a continuous random network structure. The material exhibits spin‐glass freezing at 14 K, driven by topological‐disorder and short‐range magnetic frustration, showcasing the potential of MOF glasses as a plattform for cooperative magnetic phenomena in ...
Chinmoy Das +8 more
wiley +1 more source
Mapping of Groundwater Salinity Using Dual Reciprocity Boundary Element Method in Nuq Region, Rafsanjan [PDF]
In this study, a new numerical method based on Dual Reciprocity Boundary Element Method (DRBEM) is presented to interpolate scattered data. For this purpose, water samples were taken from 120 wells in Nuq region, Rafsanjan, for salinity measurements. The
Isa Esfandiarpour Borujeni, Mahdi Sovizi
doaj

