Results 31 to 40 of about 27,265 (212)
Analysis of moving least squares approximation revisited
In this article the error estimation of the moving least squares approximation is provided for functions in fractional order Sobolev spaces. The analysis presented in this paper extends the previous estimations and explains some unnoticed mathematical ...
Mirzaei, Davoud
core +1 more source
Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha +18 more
wiley +1 more source
Polyharmonic and Related Kernels on Manifolds: Interpolation and Approximation
This article is devoted to developing a theory for effective kernel interpolation and approximation in a general setting. For a wide class of compact, connected $C^\infty$ Riemannian manifolds, including the important cases of spheres and SO(3), we ...
Hangelbroek, T. +2 more
core +1 more source
Integrative Approaches for DNA Sequence‐Controlled Functional Materials
DNA is emerging as a programmable building block for functional materials with applications in biomimicry, biochemical, and mechanical information processing. The integration of simulations, experiments, and machine learning is explored as a means to bridge DNA sequences with macroscopic material properties, highlighting current advances and providing ...
Aaron Gadzekpo +4 more
wiley +1 more source
Extensive Review of Materials for Next‐Generation Transparent Batteries and Their Design Strategies
Review explores emerging materials and design strategies for transparent batteries, examining electrodes, electrolytes, separators, and device architectures optimized for high electrochemical performance, mechanical flexibility, and optical transparency.
Atul Kumar Mishra +5 more
wiley +1 more source
Kernel-based stochastic collocation for the random two-phase Navier-Stokes equations
In this work, we apply stochastic collocation methods with radial kernel basis functions for an uncertainty quantification of the random incompressible two-phase Navier-Stokes equations.
Griebel, Michael +2 more
core +1 more source
This work reports the first gram‐scale solvothermal synthesis of ‘Rubik's cube’ nanoparticles—cubic, dendritic multicore structures with tuneable sizes and exceptional magnetic heating performance. Featuring iron oxide single‐domain character, with low coercivity fields, high magnetization, and strong MPI signals, they enable viscosity‐independent ...
Giusy M. R. Rizzo +12 more
wiley +1 more source
Dual‐cation site engineering unlocks stable and fast sodium storage in Na4VMn(PO4)3 cathodes. Li+ at Na2 suppresses Jahn‐Teller distortion, while K+ at Na1 expands ion channels, enabling synchronized V/Mn redox and quasi‐single‐phase kinetics. This atomic‐level strategy achieves ultralong cycling stability, high‐rate capability, and full cell viability
Jiaze Sun +8 more
wiley +1 more source
Anisotropic Radial Basis Function Methods for Continental Size Ice Sheet Simulations
In this paper we develop and implement anisotropic radial basis function methods for simulating the dynamics of ice sheets and glaciers. We test the methods on two problems: the well-known benchmark ISMIP-HOM B that corresponds to a glacier size ice and ...
Cheng, Gong, Shcherbakov, Victor
core +1 more source
Hybrid magnetic microdiscs with customizable size and composition are engineered through refined photolithography and LbL assembly. Embedded Fe3O4 nanoparticles enable localized, non‐cytotoxic heating, while protein cargos can be incorporated in tunable quantities.
Daniela Iglesias‐Rojas +13 more
wiley +1 more source

