Results 221 to 230 of about 42,504 (282)

Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture. [PDF]

open access: yesProc Natl Acad Sci U S A, 2020
Li X   +8 more
europepmc   +1 more source

Smart superabsorbent polymers for self-sealing and -healing of mortar [PDF]

open access: yes, 2015
De Belie, Nele   +6 more
core  

Effective Sliding Motions of Vibration‐Induced Emission Stoppers in Mechanically Interlocked Molecules as Artificial Muscle Tougheners and In Situ Molecular Shuttling Sensors for Self‐Healable Mechano‐Fluorescent Polyurethane Organogels

open access: yesAdvanced Functional Materials, EarlyView.
The self‐healable ratiometric mechano‐fluorescent polyurethane (PU) organogel is constructed by incorporating a minor amount (ca. 1.5 wt.%) of the unconventional daisy chain rotaxane (as an artificial molecular muscle toughener) with specific sliding motions and ratiometric emission behaviors into the PU skeleton, which reveals the progressed intrinsic
Tu Thi Kim Cuc   +7 more
wiley   +1 more source

A 3R (remove-remodel-repair)-integrated self-assembled Chlorella-gelatin-PEG hydrogel for diabetic wound healing

open access: gold
Yulin Li   +14 more
openalex   +1 more source

OCTOID: A Soft Robotic System Featuring Programmable Shape Morphing and Dynamic Structural Coloration

open access: yesAdvanced Functional Materials, EarlyView.
Inspired by octopuses, actuating legs based on soft materials are fabricated with programmed chiroptical properties and mechanical behaviors to achieve dynamic color modulation and reversible shape morphing, and these legs are developed into a modular OCTOID system.
Seung Hui Han   +8 more
wiley   +1 more source

4D Printing of Self‐Immolative Polymers

open access: yesAdvanced Functional Materials, EarlyView.
The integration of self‐immolative polymers (SIPs) into light‐based 3D printed structures is presented as a new “living” 4D printing strategy. By exploiting their metastability and stimuli‐responsiveness, SIP‐containing printed objects can undergo rapid and triggered degrowth under ambient conditions and subsequent regrowth through polymer ...
Johannes Markhart   +3 more
wiley   +1 more source

Fully Bio‐Based Gelatin Organohydrogels via Enzymatic Crosslinking for Sustainable Soft Strain and Temperature Sensing

open access: yesAdvanced Functional Materials, EarlyView.
Enzymatically crosslinked gelatin‐based organohydrogels, fabricated through a fully bio‐based and scalable process, exhibit exceptional strain and temperature sensing capabilities with minimal interference from environmental humidity. These transparent, stretchable, and ionically conductive materials operate without synthetic fillers or dopants.
Pietro Tordi   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy