Results 51 to 60 of about 44,316 (283)
Enzymatic Cross-Linking of Dynamic Thiol-Norbornene Click Hydrogels [PDF]
Enzyme-mediated in situ forming hydrogels are attractive for many biomedical applications because gelation afforded by enzymatic reactions can be readily controlled not only by tuning macromer compositions, but also by adjusting enzyme kinetics.
Hudson, Britney N. +3 more
core +2 more sources
Biofabrication aims at providing innovative technologies and tools for the fabrication of tissue‐like constructs for tissue engineering and regenerative medicine applications. By integrating multiple biofabrication technologies, such as 3D (bio) printing with fiber fabrication methods, it would be more realistic to reconstruct native tissue's ...
Waseem Kitana +2 more
wiley +1 more source
Micropatterned Biphasic Printed Electrodes for High‐Fidelity on‐Skin Bioelectronics
Micropatterned biphasic printed electrodes achieve unprecedented skin conformity and low impedance by combining liquid‐metal droplets with microstructured 3D lattices. This scalable approach enables high‐fidelity detection of ECG, EMG, and EEG signals, including alpha rhythms from the forehead, with long‐term comfort and stability.
Manuel Reis Carneiro +4 more
wiley +1 more source
Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. [PDF]
In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or block copolymer design.
Barrett, Devin G +7 more
core +2 more sources
Zinc(II) coordination complexes with tunable aryloxy‐imine ligands exhibit controllable supramolecular self‐assembly into hierarchical fibrous structures. Coordination‐driven stacking, not π–π interactions, enables gelation, dynamic assembly/disassembly, and enhanced nanomechanical properties.
Merlin R. Stühler +10 more
wiley +1 more source
Self-healing, stretchable, and moldable hydrogels have a great potential application in tissue engineering and soft robotics. Despite great success in reported hydrogels, it is still a great challenge to construct the moldable hydrogels with an ultrafast
Na Sun +5 more
doaj +1 more source
Macroscopic hydrogel fibers are highly desirable for smart textiles, but the fabrication of self-healable and super-tough covalent/physical double-network hydrogels is rarely reported.
Jiachuan Hua +3 more
doaj +1 more source
Substrate Stress Relaxation Regulates Cell‐Mediated Assembly of Extracellular Matrix
Silicone‐based viscoelastic substrates with tunable stress relaxation reveal how matrix mechanics regulates cellular mechanosensing and cell‐mediated matrix remodelling in the stiff regime. High stress relaxation promotes assembly of fibronectin fibril‐like structures, increased nuclear localization of YAP and formation of β1 integrin‐enriched ...
Jonah L. Voigt +2 more
wiley +1 more source
Self-healing metal coordinated hydrogels using nucleotide ligands [PDF]
A supramolecular gel formed by coordination of Zn2+ with adenosine monophosphate (AMP) is reported. The adenine base, the monophosphate, and Zn2+ are all important for gel formation.
Liang, Hao +3 more
core +1 more source
A 3D bone scaffold with osteogenic properties and capable of hardening in vivo is developed. The scaffold is implanted in a ductile state, and a phase transformation of the ceramic induces the stiffening and strengthening of the scaffold in vivo. Abstract Calcium phosphate 3D printing has revolutionized customized bone grafting.
Miguel Mateu‐Sanz +7 more
wiley +1 more source

