Results 151 to 160 of about 81,862 (314)
We systematically reviewed conversion therapy for esophageal squamous cell carcinoma and propose a response‐based treatment strategy for cT4b and M1 disease. For cT4b, we emphasize definitive chemoradiotherapy with timed re‐evaluation and selective salvage or chemoselection to surgery; for M1, conversion is reserved for limited‐burden responders with ...
Eisuke Booka, Hiroya Takeuchi
wiley +1 more source
From Semantic Search & Integration to Analytics
Semantics is seen as the key ingredient in the next phase of the Web infrastructure as well as the next generation of enterprise content management. Ontology is the centerpiece of the most prevalent semantic technologies and provides the basis of representing, acquiring, and utilizing knowledge.
openaire +3 more sources
This article presents the development of a modular software suite for automated analysis of scientific publications in PDF format. The system integrates vectorization, clustering, topic modelling, dimensionality reduction, and fuzzy logic to combine both
Pavlo Nosov +7 more
doaj +1 more source
AI‐Enhanced Surface‐Enhanced Raman Scattering for Accurate and Sensitive Biomedical Sensing
AI‐SERS advances spectral interpretation with greater precision and speed, enhancing molecular detection, biomedical analysis, and imaging. This review explores its essential contributions to biofluid analysis, disease identification, therapeutic agent evaluation, and high‐resolution biomedical imaging, aiding diagnostic decision‐making.
Seungki Lee, Rowoon Park, Ho Sang Jung
wiley +1 more source
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley +1 more source
Named entity recognition pipeline for knowledge extraction from scientific literature. Machine learning interatomic potential (MLIP) is an emerging technique that has helped achieve molecular dynamics simulations with unprecedented balance between efficiency and accuracy. Recently, the body of MLIP literature has been growing rapidly, which propels the
Bowen Zheng, Grace X. Gu
wiley +1 more source
Large language models are transforming microbiome research by enabling advanced sequence profiling, functional prediction, and association mining across complex datasets. They automate microbial classification and disease‐state recognition, improving cross‐study integration and clinical diagnostics.
Jieqi Xing +4 more
wiley +1 more source
CrossMatAgent is a multi‐agent framework that combines large language models and diffusion‐based generative AI to automate metamaterial design. By coordinating task‐specific agents—such as describer, architect, and builder—it transforms user‐provided image prompts into high‐fidelity, printable lattice patterns.
Jie Tian +12 more
wiley +1 more source

