Results 241 to 250 of about 99,563 (294)
Enhanced Numerical Equivalent Acoustic Material (eNEAM): Analytical and Numerical Framework for Porous Media with Thermo-Viscous Effects for Time Domain Simulations. [PDF]
Iglesias PC, Godinho L, Redondo J.
europepmc +1 more source
Some of the next articles are maybe not open access.
Related searches:
Related searches:
Semi‐discretization method for delayed systems
International Journal for Numerical Methods in Engineering, 2002AbstractThe paper presents an efficient numerical method for the stability analysis of linear delayed systems. The method is based on a special kind of discretization technique with respect to the past effect only. The resulting approximate system is delayed and also time periodic, but still, it can be transformed analytically into a high‐dimensional ...
Insperger, Tamás, Stépán, Gábor
openaire +1 more source
Contractivity of θ‐method for semi‐discrete systems
Numerical Methods for Partial Differential Equations, 1996This paper is concerned with nonlinear semi-discrete problems obtained when finite difference methods or Faedo-Galerkin methods are used to discretize reaction-diffusion systems with respect to the spatial variables. The purpose of this article is to give sufficient conditions for the contractivity of the \(\theta\) method in a norm generated by a ...
Galeone, Luciano, Mastroserio, Carmela
openaire +2 more sources
Stability and Accuracy of Semi-discretized Finite Difference Methods
IMA Journal of Numerical Analysis, 1984zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Iserles, A., Williamson, R. A.
openaire +2 more sources
A semi-discretization method for delayed stochastic systems
Communications in Nonlinear Science and Numerical Simulation, 2005Consider ordinary stochastic differential equations with discrete time-delay governed by \[ dX(t) = [ A X(t) + A_\tau X(t-\tau) ] dt + \sigma(X,t) dW(t) \] where \(W(t), t\in R\) is a standard \(d\)-dimensional Wiener process \((W(0)=0\), \(E [W(t)]=0\), \(E [W(t)]^2=| t| \)), \(A\) and \(A_\tau\) are nonrandom real-valued matrices, and \(\tau > 0 ...
Elbeyli, O., Sun, J. Q., Ünal, G.
openaire +2 more sources
One-step splitting methods for semi-discrete parabolic equations
Computing, 1979The main purpose of the paper is to discuss splitting methods for parabolic equations via the method of lines. Firstly, we deal with the formulation of these methods for autonomous semi-discrete equations $$\frac{{dy}}{{dt}} = f(y),{\rm E}f{\rm E}non - linear,$$ f satisfying a linear splitting relation\(f(y) = \sum\limits_{i = 1}^k {f_i (y ...
van der Houwen, P. J., Verwer, J. G.
openaire +2 more sources
Modified Nyström Methods for Semi-discrete Hyperbolic Differential Equations
SIAM Journal on Numerical Analysis, 1981First and second order Nystrom type methods are derived for second order differential equations, without first derivatives, possessing the following properties: (i) the stability interval equals $4m^2 ,m$ denoting the number of stages per integration step; (ii) the method is internally stable irrespective of the value of m; (iii) the storage ...
openaire +2 more sources
The Semi-Discrete Finite Element Method for the Cauchy Equation
Applied Mechanics and Materials, 2014In this paper, we employ semi-discrete finite element method to study the convergence of the Cauchy equation. The convergent order can reach. In numerical results, the space domain is discrete by Lagrange interpolation function with 9-point biquadrate element.
Lei Hou, Xian Yan Sun, Lin Qiu
openaire +1 more source
The semi-discrete method for solving high-dimension wave equation
Applied Mathematics and Mechanics, 1998The linear homogeneous three-dimensional Cauchy-Dirichlet problem is considered. The authors discuss a semi-discretization method to solve this problem numerically. The basic idea of the method is to discretize in two space variables and considering the resulting system of one-dimensional wave equations, which is transformed into a system of integral ...
Wu, Jiancheng, Cai, Rizeng
openaire +2 more sources
Semi-discrete iteration methods in x-ray tomography
2020Das Ziel der Computertomographie (CT) ist es, durch nicht-invasives bzw. zerstörungsfreies Messen Erkenntnisse über die innere Struktur eines Objekts zu gewinnen. Dabei werden Röntgenstrahlen durch das zu inspizierende Objekt geschickt und die Intensitätsabnahme der Strahlen nach Verlassen des Objekts gemessen.
openaire +1 more source

