Results 101 to 110 of about 141,848 (276)
Commuting Pairs in Quasigroups
ABSTRACT A quasigroup is a pair ( Q , ∗ ), where Q is a nonempty set and ∗ is a binary operation on Q such that for every ( a , b ) ∈ Q 2, there exists a unique ( x , y ) ∈ Q 2 such that a ∗ x = b = y ∗ a. Let ( Q , ∗ ) be a quasigroup. A pair ( x , y ) ∈ Q 2 is a commuting pair of ( Q , ∗ ) if x ∗ y = y ∗ x.
Jack Allsop, Ian M. Wanless
wiley +1 more source
Planarity ranks for varieties of equationally noetherian semigroups [PDF]
The problem of describing semigroup varieties with finite planarity rank is researched. In addition to the previously obtained results the author finds new countable infinite series of semigroup varieties with finite planarity rank.
Solomatin, Denis Vladimirovich
doaj +1 more source
On Endomorphism Universality of Sparse Graph Classes
ABSTRACT We show that every commutative idempotent monoid (a.k.a. lattice) is the endomorphism monoid of a subcubic graph. This solves a problem of Babai and Pultr and the degree bound is best‐possible. On the other hand, we show that no class excluding a minor can have all commutative idempotent monoids among its endomorphism monoids. As a by‐product,
Kolja Knauer, Gil Puig i Surroca
wiley +1 more source
ABSTRACT We present sufficient conditions to obtain a generalized (φ,D)$$ \left(\varphi, \mathfrak{D}\right) $$‐pullback attractor for evolution processes on time‐dependent phase spaces, where φ$$ \varphi $$ is a given decay function and D$$ \mathfrak{D} $$ is a given universe.
Matheus Cheque Bortolan+3 more
wiley +1 more source
ON THE CAYLEY SEMIGROUP OF A FINITE APERIODIC SEMIGROUP [PDF]
Let S be a finite semigroup. In this paper, we introduce the functions φs:S* → S*, first defined by Rhodes, given by φs([a1,a2,…,an]) = [sa1,sa1a2,…,sa1a2 ⋯ an]. We show that if S is a finite aperiodic semigroup, then the semigroup generated by the functions {φs}s ∈ S is finite and aperiodic.
openaire +2 more sources
Attractors for an Energy‐Damped Viscoelastic Plate Equation
ABSTRACT In this paper, we consider a class of non‐autonomous beam/plate equations with an integro‐differential damping given by a possibly degenerate memory and an energy damping given by a nonlocal ε$$ \varepsilon $$‐perturbed coefficient. For each ε>0$$ \varepsilon >0 $$, we show that the dynamical system generated by the weak solutions of the ...
V. Narciso+3 more
wiley +1 more source
Efficient Simulation of Open Quantum Systems on NISQ Trapped‐Ion Hardware
Open quantum systems exhibit rich dynamics that can be simulated efficiently on quantum computers, allowing us to learn more about their behavior. This work applies a new method to simulate certain open quantum systems on noisy trapped‐ion quantum hardware.
Colin Burdine+3 more
wiley +1 more source
Rational normal curves in weighted projective space
Abstract This article aims to extend classical homological results about the rational normal curves to analogues in weighted projective spaces. Results include determinantality and nonstandard versions of quadratic generation and the Koszul property.
Caitlin M. Davis, Aleksandra Sobieska
wiley +1 more source
A coboundary Temperley–Lieb category for sl2$\mathfrak {sl}_{2}$‐crystals
Abstract By considering a suitable renormalization of the Temperley–Lieb category, we study its specialization to the case q=0$q=0$. Unlike the q≠0$q\ne 0$ case, the obtained monoidal category, TL0(k)$\mathcal {TL}_0(\mathbb {k})$, is not rigid or braided. We provide a closed formula for the Jones–Wenzl projectors in TL0(k)$\mathcal {TL}_0(\mathbb {k})$
Moaaz Alqady, Mateusz Stroiński
wiley +1 more source
On (m, n)-ideals and (m, n)-regular ordered semigroups [PDF]
Let m, n be non-negative integers. A subsemigroup A of an ordered semigroup (S, , is called an (m, n)-ideal of S if (i) Am SAn A, and (ii) if x A, y S such that y x, then y A. In this paper, necessary and sufficient conditions for every (
Limpapat Bussaban, Thawhat Changphas
doaj