Results 11 to 20 of about 652,533 (244)
Twisted Semigroup Algebras [PDF]
We study 2-cocycle twists, or equivalently Zhang twists, of semigroup algebras over a field k. If the underlying semigroup is affine, that is abelian, cancellative and finitely generated, then Spec k[S] is an affine toric variety over k, and we refer to the twists of k[S] as quantum affine toric varieties.
Rigal, Laurent +1 more
openaire +4 more sources
Pi Semigroup Algebras of Linear Semigroups [PDF]
It is well-known that if a semigroup algebra K [ S ] K[S] over a field K K satisfies a polynomial identity then the semigroup S S has the permutation property. The converse is not true in general even when S S is a group.
Jan Okniński, Mohan S. Putcha
openaire +1 more source
Centrally essential semigroup algebras
For a cancellative semigroup S and a field F, it is proved that the semigroup algebra FS is centrally essential if and only if the group of fractions $G_S$ of the semigroup $S$ exists and the group algebra $FG_S$ of $G_S$ is centrally essential. The semigroup algebra of a cancellative semigroup is centrally essential if and only if it has the classical
Oleg Vladimirovich Ljubimtsev +1 more
openaire +2 more sources
On semigroup algebras with rational exponents
In this paper, a semigroup algebra consisting of polynomial expressions with coefficients in a field F and exponents in an additive submonoid M of is called a Puiseux algebra and denoted by Here we study the atomic structure of Puiseux algebras. To begin
F. Gotti
semanticscholar +1 more source
Tropical algebra for noise removal and optimal control
Algorithms for noise removal are either complex or ineffective, and the optimal control with inequality constrains makes the algorithm even more complex.
Chun-Mei Gong, Jiao Peng, Jing Wang
doaj +1 more source
Pseudo-amenability and pseudo-contractibility of restricted semigroup algebra
In this article the pseudo-amenability and pseudo-contractibility of restricted semigroup algebra lr1(S) and semigroup algebra, l1(Sr) on restricted semigroup, Sr are investigated for different classes of inverse semigroups such as Brandt semigroup, and ...
Olufemi Johnson Ogunsola +1 more
doaj +1 more source
Linear growth for semigroups which are disjoint unions of finitely many copies of the free monogenic semigroup [PDF]
We show that every semigroup which is a finite disjoint union of copies of the free monogenic semigroup (natural numbers under addition) has linear growth.
Abughazalah, Nabilah, Etingof, Pavel
core +2 more sources
Let \(S\) be a semigroup and let \(K\) be a field. The authors are interested in conditions under which the semigroup algebra \(K[S]\) is right or left Noetherian. In particular, they investigate cases when these two concepts coincide, when Noetherian property of \(K[S]\) implies \(S\) is finitely generated, and when \(S\) satisfies the ascending chain
Jespers, Eric, Okninski, J.
openaire +3 more sources
Locally adequate semigroup algebras
We build up a multiplicative basis for a locally adequate concordant semigroup algebra by constructing Rukolaĭne idempotents. This allows us to decompose the locally adequate concordant semigroup algebra into a direct product of primitive abundant 0-J*$0{
Ji Yingdan, Luo Yanfeng
doaj +1 more source
Skew-products of higher-rank graphs and crossed products by semigroups [PDF]
We consider a free action of an Ore semigroup on a higher-rank graph, and the induced action by endomorphisms of the $C^*$-algebra of the graph. We show that the crossed product by this action is stably isomorphic to the $C^*$-algebra of a quotient graph.
Maloney, Ben, Pask, David, Raeburn, Iain
core +3 more sources

