Results 101 to 110 of about 92,595 (298)
On the wave turbulence theory of 2D gravity waves, I: Deterministic energy estimates
Abstract Our goal in this paper is to initiate the rigorous investigation of wave turbulence and derivation of wave kinetic equations (WKEs) for water waves models. This problem has received intense attention in recent years in the context of semilinear models, such as Schrödinger equations or multidimensional KdV‐type equations. However, our situation
Yu Deng +2 more
wiley +1 more source
In our previous paper [K. Ishige, S. Okabe, and T. Sato, A supercritical scalar field equation with a forcing term, J. Math. Pures Appl. 128 (2019), pp.
Ishige Kazuhiro +2 more
doaj +1 more source
Asymptotic behaviour of a semilinear elliptic system with a large exponent
Consider the problem \begin{eqnarray*} -\Delta u &=& v^{\frac 2{N-2}},\quad v>0\quad {in}\quad \Omega, -\Delta v &=& u^{p},\:\:\:\quad u>0\quad {in}\quad \Omega, u&=&v\:\:=\:\:0 \quad {on}\quad \partial \Omega, \end{eqnarray*} where $\Omega$ is a bounded
Adimurthi +18 more
core +2 more sources
Hermite solution for a new fractional inverse differential problem
Mathematics, mathematical modeling of real systems, and mathematical and computer methodologies aimed at the qualitative and quantitative study of real physical systems interact in a nontrivial way. This work aims to examine a new class of inverse problems for a fractional partial differential equation with order fractional 0<ρ≤1$$ 0<\rho \le 1 ...
Mohammed Elamine Beroudj +2 more
wiley +1 more source
A class of semilinear elliptic equations on lattice graphs [PDF]
B. Hua, R. Li, Lin-Lin Wang
openalex +1 more source
ABSTRACT We study a class of zero‐flux attraction–repulsion chemotaxis models, characterized by nonlinearities laws for the diffusion of the cell density u$u$, the chemosensitivities and the production rates of the chemoattractant v$v$ and the chemorepellent w$w$. In addition, a source involving also the gradient of u$u$ is incorporated.
Tongxing Li +3 more
wiley +1 more source
Global solutions to semilinear parabolic equations driven by mixed local–nonlocal operators
Abstract We are concerned with the Cauchy problem for the semilinear parabolic equation driven by the mixed local–nonlocal operator L=−Δ+(−Δ)s$\mathcal {L}= -\Delta +(-\Delta)^s$, with a power‐like source term. We show that the so‐called Fujita phenomenon holds, and the critical value is exactly the same as for the fractional Laplacian.
Stefano Biagi +2 more
wiley +1 more source
Uniqueness of positive solutions for cooperative Hamiltonian elliptic systems
The uniqueness of positive solution of a semilinear cooperative Hamiltonian elliptic system with two equations is proved for the case of sublinear and superlinear nonlinearities. Implicit function theorem, bifurcation theory, and ordinary differential
Junping Shi, Ratnasingham Shivaji
doaj
Unique continuation property and local asymptotics of solutions to fractional elliptic equations [PDF]
Asymptotics of solutions to fractional elliptic equations with Hardy type potentials is studied in this paper. By using an Almgren type monotonicity formula, separation of variables, and blow-up arguments, we describe the exact behavior near the ...
Fall, Mouhamed Moustapha, Veronica Felli
core
Ground State Solutions for General Choquard Equation With the Riesz Fractional Laplacian
In this work, we study the existence of a nonzero solution for the following nonlinear general Choquard equation (CE): −Δν+ν=−ΔD−α2 ∗ Fνfν,in ℝN, where N ≥ 3, F represents the primitive function of f, f∈CR;R is a function that fulfils the general Berestycki–Lions conditions, ΔD denotes the Laplacian operator on Ω with zero Dirichlet boundary conditions
Sarah Abdullah Qadha +4 more
wiley +1 more source

