Results 71 to 80 of about 93,033 (295)
Existence of solutions of the Dirichlet problem for an infinite system of nonlinear differential-functional equations of elliptic type [PDF]
The Dirichlet problem for an infinite weakly coupled system of semilinear differential-functional equations of elliptic type is considered. It is shown the existence of solutions to this problem.
Tomasz S. Zabawa
doaj
Existencia de Soluciones Radiales para Problemas Semilineales Elípticos Indefinidos
We study the existence of radial solutions of indefinite semilinear elliptic equations in the unit ball in Rn (n>=3) with Dirichlet boundary conditions, whose nonlinear term has the form lamda.m(|x|)f(u) where m(|.|) is radially symmetric, discontinuous ...
Marco Calahorrano, Israel Cevallos
doaj +1 more source
Conformal metrics of constant scalar curvature with unbounded volumes
Abstract For n⩾25$n\geqslant 25$, we construct a smooth metric g∼$\tilde{g}$ on the standard n$n$‐dimensional sphere Sn$\mathbb {S}^n$ such that there exists a sequence of smooth metrics {g∼k}k∈N$\lbrace \tilde{g}_k\rbrace _{k\in \mathbb {N}}$ conformal to g∼$\tilde{g}$ where each g∼k$\tilde{g}_k$ has scalar curvature Rg∼k≡1$R_{\tilde{g}_k}\equiv 1 ...
Liuwei Gong, Yanyan Li
wiley +1 more source
Infinitely many solutions for semilinear nonlocal elliptic equations under noncompact settings [PDF]
In this paper, we study a class of semilinear nonlocal elliptic equations posed on settings without compact Sobolev embedding. More precisely, we prove the existence of infinitely many solutions to the fractional Brezis-Nirenberg problems on bounded ...
Choi, Woocheol, Seok, Jinmyoung
core
This contribution aims at studying a general class of random differential equations with Dirac‐delta impulse terms at a finite number of time instants. Our approach directly addresses calculating the so‐called first probability density function, from which all the relevant statistical information about the solution, a stochastic process, can be ...
Vicente J. Bevia +2 more
wiley +1 more source
The free boundary for semilinear problems with highly oscillating singular terms
Abstract We investigate general semilinear (obstacle‐like) problems of the form Δu=f(u)$\Delta u = f(u)$, where f(u)$f(u)$ has a singularity/jump at {u=0}$\lbrace u=0\rbrace$ giving rise to a free boundary. Unlike many works on such equations where f$f$ is approximately homogeneous near {u=0}$\lbrace u = 0\rbrace$, we work under assumptions allowing ...
Mark Allen +2 more
wiley +1 more source
This paper mainly dealt with the exact number and global bifurcation of positive solutions for a class of semilinear elliptic equations with asymptotically linear function on a unit ball.
Benlong Xu
doaj +1 more source
Asymptotic solutions of semilinear elliptic equations
Semilinear elliptic equations of the form \(Lu\equiv \Delta u-p(| x|)u+uf(x,u)=0\) are considered in exterior domains in \({\mathbb{R}}^ n\) for \(n\geq 2\). Both necessary and sufficient conditions are established for such equations to have positive solutions with prescribed asymptotic behavior as \(| x| \to \infty\).
Kreith, Kurt, Swanson, Charles A
openaire +1 more source
Arithmetic Satake compactifications and algebraic Drinfeld modular forms
Abstract In this article, we construct the arithmetic Satake compactification of the Drinfeld moduli schemes of arbitrary rank over the ring of integers of any global function field away from the level structure, and show that the universal family extends uniquely to a generalized Drinfeld module over the compactification.
Urs Hartl, Chia‐Fu Yu
wiley +1 more source
Reduced measures for semilinear elliptic equations involving Dirichlet operators [PDF]
We consider elliptic equations of the form (E) $$-Au=f(x,u)+\mu $$-Au=f(x,u)+μ, where A is a negative definite self-adjoint Dirichlet operator, f is a function which is continuous and nonincreasing with respect to u and $$\mu $$μ is a Borel measure of ...
Tomasz Klimsiak
semanticscholar +1 more source

