Results 31 to 40 of about 2,863 (195)
The main results proved in this paper are that if R R is a semiprime ring satisfying a polynomial identity then (1) the maximal right quotient ring of R R is also P.I. and (2) every essential one-sided ideal of R R contains an essential two-sided ideal of R R .
openaire +2 more sources
Characterizing Jordan Derivable Maps on Triangular Rings by Local Actions
Suppose that T=TriA,ℳ,ℬ is a 2‐torsion free triangular ring, and S=A,B|AB=0,A,B∈T∪A,X|A∈T, X∈P,Q, where P is the standard idempotent of T and Q = I − P. Let δ:T⟶T be a mapping (not necessarily additive) satisfying, A,B∈S⇒δA∘B=A∘δB+δA∘B, where A∘B = AB + BA is the Jordan product of T.
Hoger Ghahramani +3 more
wiley +1 more source
Noncommutative generalizations of theorems of Cohen and Kaplansky [PDF]
This paper investigates situations where a property of a ring can be tested on a set of "prime right ideals." Generalizing theorems of Cohen and Kaplansky, we show that every right ideal of a ring is finitely generated (resp.
A Kertész +38 more
core +2 more sources
On Semiprime Noetherian PI-Rings [PDF]
Let R be a semiprime Noetherian PI-ring and Q(R) the semisimple Artinian ring of fractions of R. We shall prove the following conditions are equivalent: (1) the Krull dimention of R is at most one, (2) Any ring between R and Q(R) is again right ...
Chiba, Katsuo
core +1 more source
Structure of Semiprime P.I. Rings [PDF]
In this paper we make an investigation into the structure of semiprime polynomial identity rings which is culminated by showing that each such ring R R has a unique maximal left quotient ring Q Q such that (1) Q Q is von Neumann regular with unity and (2) every regular element in R R
openaire +1 more source
A Characterization of Semiprime Rings with Homoderivations
This paper is focused on the commutativity of the laws of semiprime rings, which satisfy some algebraic identities involving homoderivations on ideals. It provides new and notable results that will interest researchers in this field, such as “R contains ...
Emine Koç Sögütcü
doaj +1 more source
Classical quotient rings of generalized matrix rings
An associative ring R with identity is a generalized matrix ring with idempotent set E if E is a finite set of orthogonal idempotents of R whose sum is 1.
David G. Poole, Patrick N. Stewart
doaj +1 more source
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire +3 more sources
Commutativity results for semiprime rings with derivations
We extend a result of Herstein concerning a derivation d on a prime ring R satisfying [d(x),d(y)]=0 for all x,y∈R, to the case of semiprime rings. An extension of this result is proved for a two-sided ideal but is shown to be not true for a one-sided ...
Mohammad Nagy Daif
doaj +1 more source
A note on a pair of derivations of semiprime rings
We study certain properties of derivations on semiprime rings. The main purpose is to prove the following result: let R be a semiprime ring with center Z(R), and let f, g be derivations of R such that f(x)x+xg(x)∈Z(R) for all x∈R, then f and g are ...
Muhammad Anwar Chaudhry, A. B. Thaheem
doaj +1 more source

