Results 81 to 90 of about 2,863 (195)
Generalized Derivations in Semiprime Gamma Rings [PDF]
LetMbe a 2-torsion-free semiprimeΓ-ring satisfying the conditionaαbβc=aβbαcfor alla,b,c∈M, α,β∈Γ, and letD:M→Mbe an additive mapping such thatD(xαx)=D(x)αx+xαd(x)for allx∈M, α∈Γand for some derivationdofM. We prove thatDis a generalized derivation.
Kalyan Kumar Dey +2 more
openaire +3 more sources
COMMUTING AND 2-COMMUTING DERIVATIONS OF SEMIPRIME RINGS
The main purpose of this paper is to study and investigate some results concerning generalized derivation D on semiprime ring R, we obtain a derivation d is commuting and 2-commuting on R.
Mehsin Jabel Atteya +1 more
doaj +1 more source
Derivations on semiprime rings [PDF]
The main result: Let R be a 2-torson free semiprime ring and let D: R → R be a derivation. Suppose that [[D(x), x], x] = 0 holds for all x ∈ R. In this case [D(x), x] = 0 holds for all x ∈ R.
openaire +1 more source
We prove that in a ring $R$ with an identity there exists an element $a\in R$ and a nonzero derivation $d\in Der R$ such that $ad(a)\neq 0$. A ring $R$ is said to be a $d$-rigid ring for some derivation $d \in Der R$ if $d(a)=0$ or $ad(a)\neq 0$ for all
O.D. Artemovych, M.P. Lukashenko
doaj +1 more source
GENERALIZED JORDAN DERIVATIONS ON SEMIPRIME RINGS [PDF]
The purpose of this note is to prove the following. Suppose $\mathfrak{R}$ is a semiprime unity ring having an idempotent element $e$ ($e\neq 0,~e\neq 1$) which satisfies mild conditions. It is shown that every additive generalized Jordan derivation on $\mathfrak{R}$ is a generalized derivation.
Ferreira, Bruno L M +2 more
openaire +2 more sources
On Fully Semiprime Submodules and Fully Semiprime Modules
Let R be a commutative ring with unity and let M be a unitary R-module. In this paper we study fully semiprime submodules and fully semiprime modules, where a proper fully invariant R-submodule W of M is called fully semiprime in M if whenever Xï ...
I.M.A. Hadi, B.N. Shihab
doaj
Prime Structures in a Morita Context
In this paper, we study on the primeness and semiprimeness of a Morita context related to the rings and modules. Necessary and sufficient conditions are investigated for an ideal of a Morita context to be a prime ideal and a semiprime ideal.
Calci, Mete Burak +3 more
core
A Commutativity theorem for semiprime rings [PDF]
AbstractIt is shown that if R is a semiprime ring with 1 satisfying the property that, for each x, y ∈ R, there exists a positive integer n depending on x and y such that (xy)k − xkyk is central for k = n,n+1, n+2, then R is commutative, thus generalizing a result of Kaya.
openaire +2 more sources
Identities with derivations and automorphisms on semiprime rings
The purpose of this paper is to investigate identities with derivations and automorphisms on semiprime rings. A classical result of Posner states that the existence of a nonzero centralizing derivation on a prime ring forces the ring to be commutative ...
Joso Vukman
doaj +1 more source

