Results 81 to 90 of about 2,745 (167)
On the generalization of torsion functor and P-semiprime modules over noncommutative rings [PDF]
Let R be an associative Noetherian unital noncommutative ring R. We introduce the functor PΓP over the category of R-modules and use it to characterize P-semiprime. P-semisecond R-modules also characterized by the functor PΛP.
Teklemichael Bihonegn+2 more
doaj +1 more source
Generalized derivations with central values on lie ideals LIE IDEALS [PDF]
Let R be a prime ring of H a generalized derivation and L a noncentral lie ideal of R. We show that if l^sH(l)l^t in Z(R) for all lin2 L, where s, t> 0 are fixed integers, then H(x) = bx for some b in C, the extended centroid of R, or R satisfies S4 ...
Rahmani, Venus, Sahebi, Shervin
core
Jordan derivations on semiprime rings [PDF]
I. N. Herstein has proved that any Jordan derivation on a 2 2 -torsion free prime ring is a derivation. In this paper we prove that Herstein’s result is true in 2 2 -torsion free semiprime rings. This result makes it possible for us to prove that any linear Jordan derivation on a semisimple Banach algebra is continuous,
openaire +2 more sources
We prove that in a ring $R$ with an identity there exists an element $a\in R$ and a nonzero derivation $d\in Der R$ such that $ad(a)\neq 0$. A ring $R$ is said to be a $d$-rigid ring for some derivation $d \in Der R$ if $d(a)=0$ or $ad(a)\neq 0$ for all
O.D. Artemovych, M.P. Lukashenko
doaj +1 more source
On graded weakly $ J_{gr} $-semiprime submodules
Let $ \Gamma $ be a group, $ \mathcal{A} $ be a $ \Gamma $-graded commutative ring with unity $ 1, $ and $ \mathcal{D} $ a graded $ \mathcal{A} $-module.
Malak Alnimer +2 more
doaj +1 more source
COMMUTING AND 2-COMMUTING DERIVATIONS OF SEMIPRIME RINGS
The main purpose of this paper is to study and investigate some results concerning generalized derivation D on semiprime ring R, we obtain a derivation d is commuting and 2-commuting on R.
Mehsin Jabel Atteya+1 more
doaj +1 more source
Generalized derivations in prime and semiprime
Let $R$ be a prime ring, $I$ a nonzero ideal of $R$ and $m, n$ fixed positive integers. If $R$ admits a generalized derivation $F$ associated with a nonzero derivation $d$ such that $(F([x,y])^{m}=[x,y]_{n}$ for all $x,y\in I$, then $R$ is ...
Shuliang Huang, Nadeem ur Rehman
doaj +1 more source
On Fully Semiprime Submodules and Fully Semiprime Modules
Let R be a commutative ring with unity and let M be a unitary R-module. In this paper we study fully semiprime submodules and fully semiprime modules, where a proper fully invariant R-submodule W of M is called fully semiprime in M if whenever Xï ...
I.M.A. Hadi, B.N. Shihab
doaj
A note on semiprime rings with derivation [PDF]
Let R be a 2‐torsion free semiprime ring, I a nonzero ideal of R, Z the center of R and D : R → R a derivation. If d[x, y] + [x, y] ∈ Z or d[x, y] − [x, y] ∈ Z for all x, y ∈ I, then R is commutative.
openaire +3 more sources
A note on Jordan left *-centralizers on prime and semiprime rings with involution
The aim of this note is to give alternative and short proofs for some results to Ali et al. in [3] by using the relationship between the concepts of Jordan left *-centralizer and right centralizer on a 2-torsion free semiprime rings endowed with ...
M.S. Tammam El-Sayiad+2 more
doaj