Results 81 to 90 of about 1,149,018 (192)
In this paper we prove that if G is a finite group of automorphisms acting on a semiprime ring R such that R has no additive ] G j-torsion, then the skew group ring R*G is also semiprime. The result was heretofore known in such special cases as when G is finite abelian, R is Goldie, or R satisfies a polynomial identity [I]. Our technique of proof is to
Susan Montgomery, Joe W. Fisher
openaire +2 more sources
Higher Derivations Satisfying Certain Identities in Rings
Let n and m be fixed positive integers. In this paper, we establish some structural properties of prime rings equipped with higher derivations. Motivated by the works of Herstein and Bell‐Daif, we characterize rings with higher derivations D=dii∈N satisfying (i) dnx,dmy∈ZR for all x,y∈R and (ii) dnx,y∈ZR for all x,y∈R.
Amal S. Alali+4 more
wiley +1 more source
Additive maps on prime and semiprime rings with involution
Let $R$ be an associative ring. An additive map $x\mapsto x^*$ of $R$ into itself is called an involution if (i) $(xy)^*=y^*x^*$ and (ii) $(x^*)^*=x$ hold for all $x\in R$.
Adel Alahmadi+4 more
semanticscholar +1 more source
Jordan triple (α,β)-higher ∗-derivations on semiprime rings
In this article, we define the following: Let N0{{\mathbb{N}}}_{0} be the set of all nonnegative integers and D=(di)i∈N0D={\left({d}_{i})}_{i\in {{\mathbb{N}}}_{0}} a family of additive mappings of a ∗\ast -ring RR such that d0=idR{d}_{0}=i{d}_{R}. DD is
Ezzat O. H.
doaj +1 more source
Skew $N$-Derivations on Semiprime Rings [PDF]
For a ring $R$ with an automorphism $\sigma$, an $n$-additive mapping $\Delta:R\times R\times... \times R \rightarrow R$ is called a skew $n$-derivation with respect to $\sigma$ if it is always a $\sigma$-derivation of $R$ for each argument.
Wei Zhang+5 more
core +1 more source
On Additivity and Multiplicativity of Centrally Extended (α, β)‐Higher Derivations in Rings
In this paper, the concept of centrally extended (α, β)‐higher derivations is studied. It is shown to be additive in a ring without nonzero central ideals. Also, we prove that in semiprime rings with no nonzero central ideals, every centrally extended (α, β)‐higher derivation is an (α, β)‐higher derivation.
O. H. Ezzat, Attila Gil nyi
wiley +1 more source
Structure of Semiprime P.I. Rings [PDF]
In this paper we make an investigation into the structure of semiprime polynomial identity rings which is culminated by showing that each such ring R R has a unique maximal left quotient ring Q Q such that (1) Q Q is von Neumann regular with unity and (2) every regular element in R R
openaire +1 more source
Multiplicativity of left centralizers forcing additivity
A multiplicative left centralizer for an associative ring R is a map satisfying T(xy) = T\(x)y for all x,y in R. T is not assumed to be additive. In this paper we deal with the additivity of the multiplicative left centralizers in a ring which contains ...
Mohammad Sayed Tammam El-Sayiad+2 more
doaj +1 more source
On the notion of 'retractable modules' in the context of algebras [PDF]
This is a survey on the usage of the module theoretic notion of a "retractable module" in the study of algebras with actions. We explain how classical results can be interpreted using module theory and end the paper with some open questions.Comment ...
Lomp, Christian
core +1 more source
On Orthogonal Generalized Derivations of Semiprime -Rings
In this paper, we study the orthogonality of two generalized derivations in semiprime G-rings. Some results are obtained in connection with ideals of semiprime G-rings and using left annihilator which is taken to be zero. GANIT J. Bangladesh Math.
K. Dey, S. K. Saha, A. C. Paul
semanticscholar +1 more source