Results 31 to 40 of about 20,297 (176)

On the analogy between real reductive groups and Cartan motion groups. III: A proof of the Connes-Kasparov isomorphism

open access: yes, 2019
Alain Connes and Nigel Higson pointed out in the 1990s that the Connes-Kasparov "conjecture"' for the K-theory of reduced groupe $C^\ast$-algebras seemed, in the case of reductive Lie groups, to be a cohomological echo of a conjecture of George Mackey ...
Afgoustidis, Alexandre
core   +2 more sources

Curves of best approximation on wonderful varieties

open access: yesBulletin of the London Mathematical Society, Volume 57, Issue 12, Page 3941-3948, December 2025.
Abstract We give an unconditional proof of the Coba conjecture for wonderful compactifications of adjoint type for semisimple Lie groups of type An$A_n$. We also give a proof of a slightly weaker conjecture for wonderful compactifications of adjoint type for arbitrary Lie groups.
Christopher Manon   +2 more
wiley   +1 more source

On the solvability of the Lie algebra HH1(B)$\mathrm{HH}^1(B)$ for blocks of finite groups

open access: yesJournal of the London Mathematical Society, Volume 112, Issue 6, December 2025.
Abstract We give some criteria for the Lie algebra HH1(B)$\mathrm{HH}^1(B)$ to be solvable, where B$B$ is a p$p$‐block of a finite group algebra, in terms of the action of an inertial quotient of B$B$ on a defect group of B$B$.
Markus Linckelmann, Jialin Wang
wiley   +1 more source

Polar symplectic representations

open access: yes, 2016
We study polar representations in the sense of Dadok and Kac which are symplectic. We show that such representations are coisotropic and use this fact to give a classification.
Geatti, Laura, Gorodski, Claudio
core   +1 more source

Symmetric products and puncturing Campana‐special varieties

open access: yesProceedings of the London Mathematical Society, Volume 131, Issue 6, December 2025.
Abstract We give a counterexample to the Arithmetic Puncturing Conjecture and Geometric Puncturing Conjecture of Hassett–Tschinkel using symmetric powers of uniruled surfaces, and propose a corrected conjecture inspired by Campana's conjectures on special varieties.
Finn Bartsch   +2 more
wiley   +1 more source

GL‐algebras in positive characteristic II: The polynomial ring

open access: yesProceedings of the London Mathematical Society, Volume 131, Issue 6, December 2025.
Abstract We study GL$\mathbf {GL}$‐equivariant modules over the infinite variable polynomial ring S=k[x1,x2,…,xn,…]$S = k[x_1, x_2, \ldots, x_n, \ldots]$ with k$k$ an infinite field of characteristic p>0$p > 0$. We extend many of Sam–Snowden's far‐reaching results from characteristic zero to this setting.
Karthik Ganapathy
wiley   +1 more source

Dual spaces of geodesic currents

open access: yesJournal of Topology, Volume 18, Issue 4, December 2025.
Abstract Every geodesic current on a hyperbolic surface has an associated dual space. If the current is a lamination, this dual embeds isometrically into a real tree. We show that, in general, the dual space is a Gromov hyperbolic metric tree‐graded space, and express its Gromov hyperbolicity constant in terms of the geodesic current.
Luca De Rosa, Dídac Martínez‐Granado
wiley   +1 more source

Topological K‐theory of quasi‐BPS categories for Higgs bundles

open access: yesJournal of Topology, Volume 18, Issue 4, December 2025.
Abstract In a previous paper, we introduced quasi‐BPS categories for moduli stacks of semistable Higgs bundles. Under a certain condition on the rank, Euler characteristic, and weight, the quasi‐BPS categories (called BPS in this case) are noncommutative analogues of Hitchin integrable systems.
Tudor Pădurariu, Yukinobu Toda
wiley   +1 more source

Surface group representations in ${\rm SL}_2({\mathbb C})$ with finite mapping class orbits

open access: yes, 2021
Given an oriented surface of positive genus with finitely many punctures, we classify the finite orbits of the mapping class group action on the moduli space of semisimple complex special linear two dimensional representations of the fundamental group of
Biswas, Indranil   +3 more
core  

Structure theorems for braided Hopf algebras

open access: yesJournal of Topology, Volume 18, Issue 4, December 2025.
Abstract We develop versions of the Poincaré–Birkhoff–Witt and Cartier–Milnor–Moore theorems in the setting of braided Hopf algebras. To do so, we introduce new analogs of a Lie algebra in the setting of a braided monoidal category, using the notion of a braided operad.
Craig Westerland
wiley   +1 more source

Home - About - Disclaimer - Privacy