Results 241 to 250 of about 117,891 (311)

CHB‐Induced Immune Zonation Chaos Elicited LXRα‐mediated Lipid Metabolism Disorders in Kupffer Cells to Induce Cancer Stem Cell Formation

open access: yesAdvanced Science, EarlyView.
By profiling the spatiotemporal hepatic landscape of CHB mouse models, the originally peri‐portal localized KCs migrated to the peri‐central in a CXCL9‐CXCR3‐dependent manner, facilitating their interaction with HBV+ hepatocytes. The interaction promoted LMD in KCs through ASGR1‐induced LXRα degradation, which, in turn, induced CSC formation via Stat3 ...
Jingqi Shi   +18 more
wiley   +1 more source

Positive Feedback Loop of Histone Lactylation‐Driven HNRNPC Promotes Autophagy to Confer Pancreatic Ductal Adenocarcinoma Gemcitabine Resistance

open access: yesAdvanced Science, EarlyView.
Histone 3 lysine18 lactylation (H3K18la) drives heterogeneous nuclear ribonucleoprotein C (HNRNPC) overexpression, activating autophagy to mediate gemcitabine resistance by stabilizing TNF receptor‐associated factor 6 (TRAF6) mRNA. Concurrently, HNRNPC stabilizes aldehyde dehydrogenase 1 family member A3 (ALDH1A3) mRNA, which enhances glycolysis and ...
Xi‐Tai Huang   +9 more
wiley   +1 more source

Astrocytic PERK Deficiency Drives Prefrontal Circuit Dysfunction and Depressive‐Like Behaviors

open access: yesAdvanced Science, EarlyView.
Chen et al. show that the endoplasmic reticulum (ER) stress sensor PERK is downregulated in prefrontal cortex (PFC) astrocytes in major depressive disorder and in chronic‐stress mouse models. In young mice, astrocyte‐specific PERK loss reduces the synaptogenic cue thrombospondin‐1 (TSP1), leading to synaptic and circuit deficits and depressive‐like ...
Kai Chen   +8 more
wiley   +1 more source

ACSL5 Regulates Glucose Metabolism and Chemotherapy Sensitivity in Colorectal Cancer Cells under Glutamine Deficiency

open access: yesAdvanced Science, EarlyView.
Glutamine deprivation triggers ACSL5 upregulation in tumor cells, sustaining their viability via dual metabolic rewiring programs. ACSL5 enhances glycolysis by relieving p53's inhibition of PGAM1 while also sustaining mitochondrial respiration and TCA cycle flux through promoting IDH2 dimerization.
Shuai Tian   +11 more
wiley   +1 more source

The Core–Shell Conformational Space of Compartmentalized Single‐Chain Nanoparticles by Paramagnetic and Hyperpolarized NMR Spectroscopy

open access: yesAdvanced Science, EarlyView.
Combinations of integrative NMR spectroscopy and molecular dynamics simulations reveal the internal structural dynamics of single‐chain nanoparticles. Abstract Single‐chain nanoparticles (SCNPs) are formed by the collapse of individual polymer chains, generating entities comparable to proteins in size, internal structure, and function.
Federico Faglia   +6 more
wiley   +1 more source

Nanogel Integrated Zwitterionic Injectable Hydrogel with Sequential Drug‐Releasing Capability for the Programmable Repair of Spinal Cord Injury

open access: yesAdvanced Science, EarlyView.
A novel drug‐loaded D/P‐g‐PSB nanogel‐incorporated hydrogel by the electrostatic attraction‐driven self‐assembling process. Sequential drug releasing property (melatonin is released first by physical diffusion, and then ibuprofen is released as the charge shielding effect and hydrogel degradation). This ion‐sensitive hydrogel platform with sequentially
Zhijian Wei   +13 more
wiley   +1 more source

Parabiosis, Assembloids, Organoids (PAO)

open access: yesAdvanced Science, EarlyView.
This review evaluates parabiosis, organoids, and assembloids as complementary disease models spanning systemic, organ, and multi‐organ levels. It highlights their construction strategies, applications, and current limitations, while emphasizing their integration with frontier technologies such as artificial intelligence, organ‐on‐a‐chip, CRISPR, and ...
Yang Hong   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy