Results 121 to 130 of about 87,763 (276)

Shape‐Morphing Nanoengineered Hydrogel Ribbons as Hemostats

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a self‐assembling, shape‐morphing nanoengineered hydrogel ribbon system that rapidly forms porous aggregates in situ for efficient hemostasis in trauma and surgical applications. Abstract Rapid and effective hemorrhage control remains a major challenge in trauma and surgical care, particularly for complex or noncompressible wounds.
Ryan Davis Jr   +9 more
wiley   +1 more source

A microfluidic platform for simultaneous quantification of oxygen-dependent viscosity and shear thinning in sickle cell blood

open access: yesAPL Bioengineering, 2019
The pathology of sickle cell disease begins with the polymerization of intracellular hemoglobin under low oxygen tension, which leads to increased blood effective viscosity and vaso-occlusion.
José M. Valdez   +3 more
doaj   +1 more source

Viscoelasticity‐Induced Controllable Periodic Meso‐Textures of Liquid Crystal Polymers in Additive Manufacturing

open access: yesAdvanced Functional Materials, EarlyView.
Viscoelasticity‐driven instabilities are harnessed to create tunable, periodic textures in 3D‐printed liquid crystalline polymers. This study illustrates how processing parameters control these spontaneous meso‐scale patterns. These unique structural architectures unlock new possibilities for functional devices, ranging from photonic components to ...
Miaomiao Zou   +17 more
wiley   +1 more source

A Biologically‐Architected Wear and Damage‐Resistant Nanoparticle Coating From the Radular Teeth of Cryptochiton stelleri

open access: yesAdvanced Functional Materials, EarlyView.
The ultrahard teeth of mollusks that feed on rocky substrates contain a wear‐resistant coating on their surfaces consisting of densely packed mesocrystalline magnetic nanoparticles within an organic matrix. These coatings display significant hardness and toughness through their highly controlled mesocrystalline architectures.
Taifeng Wang   +7 more
wiley   +1 more source

Pipe flow of shear-thinning fluids Pipe flow of shear-thinning fluids

open access: yes, 2012
Lʼécoulement de fluides rhéofluidifiants en conduite cylindrique est étudié à lʼaide de simulations numériques. Le comportement rhéofluidifiant est modélisé par la loi de Carreau. Lʼécoulement est décomposé en un écoulement de base et une perturbation.
López-Carranza, S, Jenny, M, Nouar, C
openaire   +1 more source

Living Liquid Metal Composites Embedded with Electrogenic Endospores for Next‐Generation Bioelectronics

open access: yesAdvanced Functional Materials, EarlyView.
A new class of living liquid metal composites is introduced, embedding Bacillus subtilis endospores into eutectic gallium–indium (EGaIn). The spores enhance droplet coalescence, strengthen interfacial conductivity, and provide on‐demand electrogenic functionality after germination. The composites exhibit high conductivity, self‐healing, patternability,
Maryam Rezaie, Yang Gao, Seokheun Choi
wiley   +1 more source

Toughening β‐Ga2O3 via Mechanically Seeded Dislocations

open access: yesAdvanced Functional Materials, EarlyView.
β‐Ga2O3 is promising for next‐generation semiconductors but its brittleness limits flexible and high‐precision applications. Here, mechanically seeded dislocations introduced by surface deformation improved damage tolerance in (001) β‐Ga2O3. Nanoindentation and characterization show dislocations suppress cleavage cracks by enabling stable plastic ...
Zanlin Cheng   +5 more
wiley   +1 more source

Extensive Review of Materials for Next‐Generation Transparent Batteries and Their Design Strategies

open access: yesAdvanced Functional Materials, EarlyView.
Review explores emerging materials and design strategies for transparent batteries, examining electrodes, electrolytes, separators, and device architectures optimized for high electrochemical performance, mechanical flexibility, and optical transparency.
Atul Kumar Mishra   +5 more
wiley   +1 more source

Bio‐Orthogonally Crosslinked Supramolecular Polymer Bottlebrush Hydrogels for Long‐Term 3D Cell Culture

open access: yesAdvanced Functional Materials, EarlyView.
Fibrous benzenetrispeptide (BTP) hydrogels, fabricated via strain‐promoted azide‐alkyne cycloaddition (SPAAC) crosslinking, form robust, bioinert networks. These hydrogels can support 3D cell culture, where cell viability and colony growth depend on the fiber content.
Ceren C. Pihlamagi   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy