Results 191 to 200 of about 219,591 (307)

Polyzwitterionic Organohydrogel and Soft Composite with Tunable Sol–Gel Properties Enabling On‐Demand Functionalization with Colloids

open access: yesAdvanced Science, EarlyView.
Poly[2‐(methacryloyloxy)ethyl]dimethyl‐(3‐sulfopropyl)ammonium hydroxide‐based organohydrogels are formed via nonsolvent‐induced gelation, featuring tunable viscoelasticity. Functional fillers (MXene nanosheets, magnetic NdFeB microparticles) enable electrical, magnetic, and mechanical responsiveness for applications in mechano‐tunable electromagnetic ...
Ziyue Miao   +4 more
wiley   +1 more source

Microgel‐Based Hierarchical Porous Hydrogel Patch with Adhesion and Resilience for Myocardial Infarction

open access: yesAdvanced Science, EarlyView.
This study develops a hierarchically porous hydrogel patch strategy (HPMP), based on gas‐shearing microfluidics and an aqueous two‐phase system to fabricate porous microgels as microgel‐based bioinks. The porous microgels with controllable porous structure exhibit excellent cellular behavior.
Ziyang Liu   +13 more
wiley   +1 more source

Ultrasound Shear Wave Velocity Varies Across Anatomical Region in Ex Vivo Bovine Ovaries. [PDF]

open access: yesTissue Eng Part A, 2020
Gargus ES   +5 more
europepmc   +1 more source

Understanding the Roles of Microstructure and Viscoelasticity of Soft Ionic Elastomer for Super‐Capacitive Pressure Sensors

open access: yesAdvanced Science, EarlyView.
By engineering the PVA/H3PO4 ionic elastomer with optimized viscoelasticity and a height‐graded microstructure, the pressure sensor achieves a broad linear range up to 2000 kPa and a high sensitivity of 2.70 nF/kPa. These advancements underscore its strong potential for wearable electronics, including bio‐signal detection, health monitoring, and ...
Allen J. Cheng   +13 more
wiley   +1 more source

Structure‐Dependent Resonant Frequency Engineering of Textile Tactile Sensors Toward Rapid and Precise Braille Recognition Surpassing Human Sensation

open access: yesAdvanced Science, EarlyView.
A resonant frequency engineering strategy is proposed to modulate the sensibility of piezoresistive textile‐based tactile sensor. It achieves simultaneous detection of static pressure and dynamic vibrations across an unprecedented bandwidth of 5–600 Hz, surpassing human sensation, therefore enables rapid and precise braille recognition.
Xianhong Zheng   +17 more
wiley   +1 more source

A Microfiber‐Reinforced Janus Hydrogel E‐Skin With Recyclable Feature for Multimodal Sensing and Gender‐Specific Physiological Monitoring

open access: yesAdvanced Science, EarlyView.
Hydrogel‐based wearable electronics hold great promise for physiological monitoring in privacy‐sensitive regions. In this study, a polyurethane (PU) microfiber‐reinforced gelatin hydrogel e‐skin is developed, boasting multiple advantages such as ultra‐thinness, high toughness, and long‐term skin conformability.
Yarong Ding   +11 more
wiley   +1 more source

Wavy‐Interlocked Stretchable Triboelectric Nanogenerators Enhanced by Liquid Metal Microflowers for Self‐Powered Wearable Motion Monitoring

open access: yesAdvanced Science, EarlyView.
Schematic showing a stretchable triboelectric nanogenerator based on interlocked wavy architectures that uses EGaIn microflower‐embedded PVDF‐TrFE and Nylon‐6 nanofiber membranes. The multi‐petaled, electron‐rich EGaIn microflowers enhance interfacial polarization and capacitance, while the interlocked wavy architecture enlarges the effective contact ...
Qianqian Xu   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy