Results 181 to 190 of about 209,030 (281)

Fabrication Technologies for Soft, Multimaterial Optical Fibers for In Vivo Diagnostics and Phototherapy, With a Focus on Extrusion Printing

open access: yesAdvanced Materials Technologies, EarlyView.
Soft multimaterial optical fibers integrate multiple functionalities—such as waveguiding, side emission, sensing, drug delivery or actuation—into a single filament for wearable, implantable, and tissue‐integrated devices for diagnostics and phototherapy.
Zahra Kafrashian   +2 more
wiley   +1 more source

Lattice Structures for Bone Replacement: The Intersection of Bone Biomechanics, Lattice Design, and Additive Manufacturing

open access: yesAdvanced Materials Technologies, EarlyView.
This review outlines how understanding bone's biology, hierarchical architecture, and mechanical anisotropy informs the design of lattice structures that replicate bone morphology and mechanical behavior. Additive manufacturing enables the fabrication of orthopedic implants that incorporate such structures using a range of engineering materials ...
Stylianos Kechagias   +4 more
wiley   +1 more source

Hydrogel Confinement Strategies for 3D Cell Culture in Microfluidic Systems

open access: yesAdvanced Materials Technologies, EarlyView.
Hydrogel confinement structures are key to organizing 3D cell cultures in microfluidic devices. This review classifies five structural strategies (micropillar, phaseguide, porous membrane, stepped‐height, and support‐free) and examines their trade‐offs alongside fabrication methods.
Soohyun Kim, Min Seok Lee, Sung Kyun Lee
wiley   +1 more source

Anti‐Slip Material‐Based Strategies and Approaches

open access: yesAdvanced Materials Technologies, EarlyView.
This review highlights the principle mechanisms of slipping at the microscale, linking contact mechanics with a friction behavior model for surface interfaces. Main strategies to develop anti‐slip properties to the surfaces are discussed alongside standardized testing approaches.
Sogand Abbaspoor‐Zanjani   +3 more
wiley   +1 more source

Ductility Tuning via Cluster Network Characteristics of Porous Components

open access: yesAdvanced Materials Technologies, EarlyView.
Network optimization via cluster characteristics induced by interaction of stress concentration is proposed, demonstrating increased cluster size and dispersion in non‐uniform porous components. The optimized structures exhibit, for the first time, that enhanced ductility and damage progression is controllable through zigzag cluster network designed by
Ryota Toyoba   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy