Results 71 to 80 of about 1,589,665 (327)
In this study, the mechanical response of Y‐shaped core sandwich beams under compressive loading is investigated, using deep feed‐forward neural networks (DFNNs) for predictive modeling. The DFNN model accurately captures stress–strain behavior, influenced by design parameters and loading rates.
Ali Khalvandi+4 more
wiley +1 more source
Physics-informed neural networks for understanding shear migration of particles in viscous flow [PDF]
Daihui Lu, Ivan C. Christov
openalex +1 more source
2020 roadmap on solid-state batteries
Li-ion batteries have revolutionized the portable electronics industry and empowered the electric vehicle (EV) revolution. Unfortunately, traditional Li-ion chemistry is approaching its physicochemical limit. The demand for higher density (longer range),
M. Pasta+35 more
semanticscholar +1 more source
Deformation Behavior of La2O3‐Doped Copper during Equal Channel Angular Pressing
By additions of strengthening elements and/or structure optimization, the mechanical properties of copper can be increased while keeping favorable electric conductivity. By combining addition of La2O3 and processing by equal channel angular pressing, substructure development is achieved, leading to increase in microhardness to more than double the ...
Lenka Kunčická+2 more
wiley +1 more source
Multiscale Modeling of Process‐Induced Defects in Fused Filament Fabrication‐Printed Materials
This study presents a predictive multiscale modeling tool for defect analysis of fused filament fabricated‐printed materials and their performance prediction using a mechanistic data science‐based reduced‐order modeling approach. Process‐induced defects are inherent to additively manufactured parts and significantly influence the performance of printed
Satyajit Mojumder+3 more
wiley +1 more source
Direct Consolidation of Copper–Graphene Composite by Rotary Swaging
The applicability of the rotary swaging method for preparation of electroconductive copper–graphene composite by direct consolidation of powders is proven. The consolidated material features advantageous microstructure featuring fine grains and twins, with homogeneous distribution of graphene, primarily along the twin boundaries, which contribute to ...
Radim Kocich+2 more
wiley +1 more source
Numerical simulations of impact crater formation with dilatancy
Impact‐induced fracturing creates porosity that is responsible for many aspects of the geophysical signature of an impact crater. This paper describes a simple model of dilatancy—the creation of porosity in a shearing geological material—and its ...
G. Collins
semanticscholar +1 more source
TURBULENT STRESSES IN LOCAL SIMULATIONS OF RADIATION-DOMINATED ACCRETION DISKS, AND THE POSSIBILITY OF THE LIGHTMAN–EARDLEY INSTABILITY [PDF]
We present the results of a series of radiation MHD simulations of a local patch of an accretion disk, with a fixed vertical gravity profile but with different surface mass densities and a broad range of radiation to gas pressure ratios.
S. Hirose, O. Blaes, J. Krolik
semanticscholar +1 more source
This study investigates the mechanical properties of Carbon/Aramid intraply hybrid fiber‐reinforced Elium composites under 6 months of water aging. After aging, flexural strength decreases by 25.89%, tensile strength by 4.40%, and fracture toughness by 21.56%.
Muhammed Huseyin Guzel, Gurol Onal
wiley +1 more source
In this research, ZrC coatings are evaluated against various counterprobes at the microscale using novel super‐stiff atomic force microscopy cantilevers. The chemical composition of the coating is shown to be an important factor influencing coating hardness and Young's modulus, while surface roughness, counterprobe hardness, and surface energy are the ...
Piotr Jenczyk+4 more
wiley +1 more source